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Preface

The goals of physics are to understand nature and partly such that we can make accurate predic-
tions about nature. Physicists often set about pursuing these goals by reasoning mathematically
from a small set of fundamental laws which look much like mathematical axioms. Because of this
emphasis on mathematical reasoning and logical deduction, it is easy to lose sight of the crucial
fact that physics, like the other sciences, is experimental. This means that experiments are the
basis for the laws of physics and all the predictions we derive from them � the �laws� are in essence
just concise summaries of experimental results � and in this way, they are quite di�erent from
mathematical axioms. When a theoretical prediction con�icts with an experimental �nding, it is
always the theory which must be discarded � so experiments constrain theory. It is experiment
which sorts out which theories are possible and which are not. Naturally, the real story is often
more complicated than this simple picture: there are examples of great theorists who refused to
believe in experiments that seemed to contradict their views and whose intuitions about nature
were ultimately vindicated by more careful later experiments. There have also been some great
theorists who tried this dangerous game and lost. Notwithstanding these interesting complexities
of physics research as a human endeavor plagued with fascinating individual cases that challenge
any generality we state, the fundamental principle remains that experiments are the ultimate basis
of our physical knowledge.

Real experiments are also a messy business. It is almost never easy to disentangle a single phe-
nomenon or principle to be tested from all the other interactions and phenomena that are always
present. Right away we are forced to make approximations, to try to neglect interactions that
are hopefully small (like air resistance), and to model others that may not be small (like sliding
friction) in ways that we know are imperfect. There is always the issue of choosing an appropriate
model (i.e. a mathematical description of the experiment that inevitably leaves some things out).
Of course, one wants to be sure that what is left out is in fact negligible, or, more precisely, one
wants to have some estimate of the size of the errors made. So good experiment design involves
error analysis, which can be surprisingly intricate. In this course you will encounter some of these
issues of experiment design and uncertainty analysis, but our focus will be primarily on the using
the physics you learn in the classroom to understand real phenomena in the lab. Applying the
tools and techniques you learn in the classroom to analyzing your experiments will give you good
practice in using the physics you are learning.

This manual begins with information about the course policies and instructions for preparing
your lab reports. This is a good place to check if you have questions about what is expected in
your reports. The introductory section also includes some general information about reporting
measured numbers properly and analyzing experimental uncertainties. Make sure to also look over
this information while preparing your reports. Descriptions of the weekly laboratory experiments
follow.
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Laboratory Course Information
Knox College Physics 120 - Winter 2025

Lab Meetings: Wednesdays in room SMC D105

Lab Instructor: Tom Moses, SMC D116, x7341, email: tmoses@knox.edu

Lab Report Honor Code Policy: You are encouraged to work together on lab re-
ports; you may consult other students as well as tutors, other physics faculty, etc in addition to
your textbook as well as other reference material such as textbooks in the library or in the physics
lounge. However, you may only exchange data with a lab partner that was present when

you collected the data. Your �nal write-up must be your own unique product. In particular,
duplicate reports, even from lab partners, are not acceptable. Likewise, sharing any

exact text or plots from your report is not acceptable. And the use of AI in preparing

lab reports is strictly prohibited.

Lab Report Submission: Lab Reports are due on the following Friday at 4:00PM. In other
words, you will perform your lab on Wednesday and have 2 days to make your lab report. Reports
should be submitted in the marked box in the hallway outside the lab room. See the next section
for instructions on preparing your lab reports.

Late Policy: Late labs get a 10% deduction per (business) day. Special arrangements can
be made (in advance, whenever possible) for illness, emergencies, unavoidable absences, sports
competitions, etc.

Laboratory Computers: You may log on to laboratory computers using a lab username
and password that will be given in class. Alternatively, you may use your ordinary Knox network
username and password to log onto the lab computers - in that case, be sure to log o� before

leaving the lab.
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Preparing Laboratory Reports

I. Report Format

Laboratory reports for this course will be very streamlined, since we want you to focus on
understanding the physical ideas rather than on crafting extensive scienti�c reports. Your
work should be clear and concise. The report you hand in should consist of the following
parts:

1. Identifying information:

� Your name

� "Lab partner:" followed by the names of your lab partner(s)

� Your lab time (Period 2, 3, or 5)

2. Answers to the questions including any necessary data analysis, calculations, and
plots.

3. Raw data as an appendix, attached to the end.

No abstract, introduction, materials and methods, procedure, or conclusion sections are re-
quired in your lab reports this term.

II. Answers to Questions

Answer any question requiring an explanation concisely in good English. Whenever cal-
culations are required, show them in full detail. Where calculations are required, you may
either write the equations neatly by hand or format them properly (e.g. in Word using the
Equation Editor). If a number of similar, repetitive calculations are necessary, show only
one example.

When showing your calculations make sure you always:

� de�ne all symbols used, e.g. m = mass of ball; vo = initial speed of glider, etc.,

� specify the units of all measured quantities, including the slopes and intercept of
plotted lines, unless they are unitless,

� take care to use a reasonable number of signi�cant digits..

III. Raw Data

Present data cleanly and clearly. Whenever appropriate, present data in chart or tabu-
lar form. If you have handwritten raw data records, staple them to the back of your report
as an appendix.

� Give your data tables a title so it is clear what the data refer to.
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� Specify the units of measured quantities and take care to use a reasonable number
of signi�cant digits.

� When possible, estimate the uncertainty in a measured quantity. For example, if
you are recording a length measurement of 0.500 m that you believe is accurate to
within 2 mm, write:
length of track = L = 0.500 ± 0.002 m.

IV. Working Together

You are encouraged to work together on lab reports and may consult with anyone or any
book that you may �nd helpful. However, data may only be shared among lab part-

ners who were both present when the data was taken. You may not take data and
share it with someone that was not there or request that someone do this for you - this is
an Honor Code violation. Your �nal write-up must be your own unique product -

typed by yourself without use of AI software or any other draft report to help

you. In particular, duplicate reports, even from lab partners, are not acceptable and will
be viewed as a violation of the Honor Code.

Please feel free to consult me whenever I am in my o�ce for help with any

aspect of your laboratory experiment or report.

V. Experimental Accuracy

The experiments in this course generally give results that are accurate to better than ±10%
to the accepted values. If your experimental results di�er form the expected values by signi�-
cantly more, say 40%, then you likely have made an error in your calculations or a signi�cant
mistake in the lab procedure. In such a case, you should recheck your calculations or return
to the laboratory and repeat the required measurements. The laboratory will be open ever
weekday until 5PM or so, often later. You additionally have access by calling campus safety
anytime.

VI. Preparing plots

All plots must be prepared using computer software such as Excel, Mathematica, or some-
thing similar. Plots must have a title and labels for the x- and y-axes, including the units
of the plotted quantities. Do not connect the data points with line segments and do not
attempt to draw a best �t line by eye. If the data set is linear, you should use a computer
application (hopefully whatever you used to plot the data) to �t a straight line to your data
similar to the process explained below for how to do so in Excel.
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Instructions for Preparing Plots using Excel

1. Type or copy-and-paste data into columns in Excel.

2. Click-and-drag to select the data, then choose Insert, then click the Scatter Plot

icon on the menu bar, then select the scatter plot with markers only from the drop-down
menu.

3. With the plot selected, click the Layout tab under Chart Tools. You can then click
appropriate icons to add a chart title and axis labels. Click Gridlines and select none
to eliminate gridlines.

4. To add a linear regression or �t line to your plot, click Trendline, then More trendline

options. In the popup dialog box, choose type Linear and check the boxes to Display
equation on chart and Display R-squared value on chart. The R-squared value
gives an indication of the linearity of your data; R-squared = 1 for perfectly linear
data. Be sure to show su�cient digits so that the deviation of your value from 1 can be
ascertained. Be sure to show a reasonable number of signi�cant digits in the slope and
y-intercept given on the plot. You can format the number of digits displayed by right-
clicking on the trendline equation displayed on your graph and selecting the Format

option.

5. Not all data is appropriate to apply a linear �t to. Make sure you are plot-

ting data that you expect a linear relationship for before going through this

procedure!!
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Calculations in Excel

Often in this course you will want to create a new data column containing values calculated
using the values contained in other columns. You can, and should, do this in an automated
way. When you click on a cell in Excel in the new column a formula bar should appear
somewhere near the top of the window. In that formula bar is where you will want to enter
the formula for whatever calculation you would like perform. Details on creating formulas
can be found in the Help documentation in Excel, but a couple of simple examples are given
below:

= A1*2+1 (Doubles the value in cell A1 and adds one)
=(A1^2+B1^2)^0.5 (Adds the squared values in cells A1 and B1 and takes the square
root.)

Note that formulas always start with the equals sign =. After having typed a formula
for one cell, you can copy-and-paste it into all similar cells (Excel automatically understands
that it should use cells in the appropriate row for each calculation) by just clicking and
dragging a box over all the appropriate cells.
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Reporting Measured Numbers:

Significant Digits

Reporting a measured number with an appropriate number of digits is important since any num-
ber published in a scienti�c report implicitly implies a certain experimental resolution. In other
words, if you report a length of 1.045 mm, you are not just asserting the length, but also that your
measuring device had a resolution of thousandths of a millimeter. So, if you display too many
digits, you are making a misleading claim about the precision of your measurement.

Deciding how many digits are appropriate to report is not always simple - the Department of
Physics and Astronomy covers the proper mathematical theory on this topic later in the courses
PHYS 241 and PHYS 245. However, there is a very simple approximate way to do it: the method
of �signi�cant digits.� Keeping track of the number of signi�cant digits is quite easy to do and gets
the number of digits about right (± 1 digit), which keeps the experimental uncertainty to within
about an order of magnitude (i.e. a factor of ten) of the correct value. Because it is simple and
approximately right, the method is very worthwhile and all serious science students should get in
the habit of keeping track of the number of signi�cant digits in every reported number. Signi�cant
digits turns out to be both a useful and easy way to approximate our uncertainty.

Number of Significant Digits in a Measured Quantity:

The number of signi�cant digits in a measured number is determined by the resolution of the
measuring equipment and by the magnitude of the quantity measured.

Examples:

A ruler with ± 0.1 mm precision is used to measure a one millimeter long sample.
The result is: 1.0 mm ± 0.1 mm. (The quantity 1.0 mm has 2 signi�cant digits).

The same ruler is used to measure a ten-centimeter long sample.
The result is: 100.0 mm ± 0.1 mm (The quantity 100.0 mm has 4 signi�cant digits).

Vernier calipers with ±0.05 mm precision are used to measure the one millimeter sample.
The result is: 1.00 mm ± 0.05 mm (The quantity 1.00 mm has 3 signi�cant digits).

(Note that the uncertainty has only one signi�cant digit � uncertainties are not accurately known quan-

tities. Note also that the measured number has as many digits after the decimal point as the uncertainty

so that they can be added.)
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Propagation of Significant Digits in a Calculation:

1. Adding/Subtracting

The number of signi�cant digits in the result is determined by the operand with the least
number of signi�cant digits after the decimal point.

Examples:
2. 0 0 5
0. 0 4

+1 3. 2 4 1 5
1 5. 2 9

1. 9 5 4
- 0. 4 3
1. 5 2

2. Multiplying/Dividing or Other Operations (exponeniating, etc.)

The number of signi�cant digits in the result is the same as the smallest number of signi�cant
digits in any of the operands.

Examples:

2.005× 1.04× (3.2× 102) = 6.7× 102

(Note: Writing the above result as 670 is ok, but it is somewhat ambiguous whether or not the zero

is supposed to be signi�cant. The use of scienti�c notation avoids this ambiguity).

sin(1.2π) = −0.59

3. Using extra digits in intermediate steps of a calculation to avoid round-o� error.

You may use an extra digit in intermediate steps to avoid error due to repeated round-o�s.
(Note that one or at most two extra digits is plenty; using all eight digits displayed by the
calculator is always a waste of time).

If you use extra digits, this should be done in a part of your report designated for calcula-
tions. In the section of your report where you provide answers to the questions,

the reported numerical values must have an appropriate number of signi�cant

digits.
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A Brief Introduction to Error Analysis

Errors and Uncertainties

Suppose the theory you are testing predicts a value of 2.0 for a particular quantity, but your
experimental value is 1.5. Is your experimental value consistent with the theory or not?

This sort of situation arises all the time with experiments: the measured number is not exactly
identical with the predicted theoretical value. To draw any conclusion from the experiment, it's
necessary to know what the precision of the measured number is. For example, if the measured
number and its uncertainty are 1.5 ± 0.5, the measurement is consistent with the theoretical pre-
diction of 2.0; however, if the measured number were 1.5 ± 0.1, it is not. Knowing the uncertainty
in your measured number is an essential part of the experiment. The uncertainty number (the
± 0.1) is customarily called the �experimental error� although the term is somewhat misleading -
no sort of error has necessarily been made by anyone - uncertainties are inherent in the measuring
process due to the limitations of the instruments used and sometimes due to the statistical uncer-
tainty inherent in the natural phenomenon itself.

Types of Errors

It is important to realize that uncertainties can get into an experiment in a surprising number of
di�erent ways, and often just identifying the major source of uncertainty can be a challenge. The
most obvious way uncertainties enter is through the limitations of the measuring instruments; for
example, the smallest markings on the ruler are millimeters, so the uncertainty of a ruler mea-
surement must be at least a millimeter. However, the uncertainty of a ruler measurement could
easily be much more than a millimeter. Suppose you are measuring the focal length of a lens by
focusing light from a distant source on a screen and measuring the lens-to-screen distance with a
ruler. Di�erent distances (maybe di�ering by a few mm) might look equally in focus to you, so the
uncertainty in this case is a few mm. This is a problem of de�nition � the visual determination
of �in focus� has uncertainty.

As another example, you might try measuring the length of a tabletop and �nd that you get
slightly di�erent measurements depending on what part of the table you measure � because its
sides are not quite smooth or perhaps imperfectly parallel. Here again the uncertainty could be
larger than the uncertainty coming from the ruler's markings. This uncertainty is due to model

error : the model of the tabletop as rectangle is not exact.

Sometimes the way a measuring device is read contributes an error: if you are constrained to
view the ruler from an angle rather than perpendicularly, the geometry of the viewing can result
in parallax error.

Another possibility is that the ruler was manufactured poorly, with the markings 1% too close
together � then all measurements made with this ruler will be low by 1%. This non-random error
due to miscalibrated equipment, which is always present to some degree, is called systematic

error. It can be di�cult to estimate the size of systematic errors: sometimes the equipment
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manufacturer speci�es a probable or guaranteed maximum degree of systematic uncertainty in an
equipment manual, sometimes an experimenter must undertake a separate calibration experiment

to test the measuring instrument against a known standard (which itself has a speci�ed maximum
uncertainty, hopefully small).

Some uncertainties are actually random, and then the degree of uncertainty can be measured
accurately by repeating the experiment many times � the degree of scatter among the measured
values (i.e. standard deviation) can usually be taken as the measure of the uncertainty. In prac-
tice, however, uncertainties usually result from many sources � systematics, random uncertainties,
and various model errors � and it is not always easy to �gure out what source of uncertainty is
dominant and which can be safely ignored.

As a last word on experimental error, it is important to understand that �human error� is not
a legitimate type of experimental error. In other words, if you did a procedure wrong or wrote
down a wrong number, this does not count as �experimental error� � it is simply a mistake.
Note that the lab can be made available day and night, so if you should discover a mistake, you

are encouraged to return and redo a procedure or an experiment.

Estimating Uncertainties

As the above discussion indicates, �guring out the size of an experimental uncertainty can be
tricky. Fortunately, we usually only require an estimate, and this is usually not too di�cult. For
ruler and other scale reading measurements, ± half the smallest scale division is a reasonable
estimate for the uncertainty (but be alert for situations where the actual uncertainty is larger, as
in the examples above). This rough estimate will handle ruler and balance measurements. For
timing measurements (including velocity), it is often convenient to repeat the measurement a few
times - the maximum deviation from average gives a rough, order-of-magnitude measure of the
uncertainty.

Propagating Uncertainties

Once you know the uncertainties in the raw measured quantities in an experiment, you may still
need to know the uncertainty in some other value calculated from the raw quantities. For example,
after you measure the mass m ± ∆m and the volume V ± ∆V of an object, you might want to
know the mass density and its uncertainty. Of course, the mass density ρ is given by ρ = m

V
� but

what is its uncertainty? This is the problem of propagation of uncertainties � �guring how uncer-
tainties are a�ected when they propagate through a calculation or a series of calculations. There
are well-established statistical rules for how to �gure this out � but the rules are a little complicated
and actually only rigorously valid for random uncertainties following the normal, or bell-curve,
frequency distribution (although the method is approximately valid generally, and in practice used
almost universally). We present instead a simpler approach for estimating the uncertainties in
this course (which are usually dominated by systematic rather than random uncertainties): the
uncertainty ∆ρ in the density is given by
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∆ρ =
1

2
(ρmax − ρmin),

where ρmax is the maximum density consistent with the data and ρmin is the minimum density.
Hence we have

ρmax =
m+ ∆m

V −∆V
and ρmin =

m−∆m

V + ∆V
.

Take a close look at the plus and minus signs in these relations and note that ρmax is not the
maximum mass over the maximum volume, but rather the maximum mass over the minimum

volume.

The above approach to propagating uncertainties gives a worst-case estimate: the density reaches
its limiting value ρ ± ∆ρ only when both mass and volume are at the (appropriate) ends of their
respective ranges. If the uncertainties in mass and volume were random and uncorrelated, one
might expect this event (both mass and volume simultaneously at the limit of their allowed ranges)
to be rather unlikely, and the above procedure would then give an overestimate of the uncertainty.
On the other hand, if the uncertainties in mass and volume are not random but due to systematic
errors, we may in fact be most interested in this worst-case bound on the uncertainty. And as a
practical matter, this estimate of the uncertainty will in most cases be not too much larger (say,
within a factor of 2) than that calculated by the statistically rigorous approach. And in most
cases, this degree of accuracy in the estimate of uncertainties is quite adequate � the calculation of
uncertainties is sometimes not a very exact science! Thus, it is always important to document

how you calculated your uncertainties.
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Uncertainty in the Slope and y-intercept of a Linear Fit
(Reference: J. Higbie, Am. J. Phys., Vol. 59, No. 2, February 1991)

Though the derivation goes beyond the scope of this class, one can calculate the uncertainty in
the slope and y-intercept from the correlation parameters given to you in your linear �t.

� The uncertainty in the slope (δm) is given by:

δm =
|m| tan(arccos(R))√

N − 2
(1)

where m is the slope, R is the square root of the R2 value from the linear �t, and N is the
number of data points in the data set. Note that there cannot be any uncertainty in the �t
of you data if there are no more than 2 data points!

� The uncertainty in the y-intercept (δb) is given by:

δb = δm · xrms (2)

where xrms is the root mean square value of the x values.

� The root mean square value of a set of x values can be found as

xrms =

√√√√ 1

N

(
N∑
i=1

x2
i

)
(3)

As you can see, it is the �root� of the �mean� of the �squares�. Note that, the further the
values are from the y-axis the larger the xrms value and consequently the larger the uncer-
tainty in the y-intercept for a given slope uncertainty.

Further Reading

Students interested in further reading on the subject of error analysis are directed to John Taylor's
excellent and highly accessible text An Introduction to Error Analysis.
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A Brief Introduction to Linear Interpolation

It is expected that students bring with the to this course a familiarity with linear equations. In
the common `slope-intercept form" y = mx + b where m is the slope and b is the y-intercept.
Recall that given two points on a line, the equation for the line can be determined. The slope is
found from m = y2−y1

x2−x1
= ∆y

∆x
. Using the calculated slope, one can �nd the y-intercept by plugging

in one of the two given points and solving for the unknown intercept b.

In this course, we will often deal with functions that are not linear. However, the vast ma-
jority of the functions we will encounter will be continuous and smooth. When you zoom in on a
smooth continuous function f(x) and consider how the function is changing between two values
of x (e.g. x1 and x2) where ∆x is su�ciently small, the points of the function between x1 and x2

can be approximated with a linear function de�ned by the points (x1, y1) and (x2, y2) in the usual
manner. Now this approximation is only appropriate for values of x between x1 and x2. For a
di�erent interval, a di�erent linear function must be determined.

EXAMPLE: Consider Table 1 in Lab 1 which has Temperature vs. Resistance for the ther-
mistor we are using. Suppose you measure a resistance for the thermistor of 200,000 Ω. To what
temperature does this resistance correspond?

1. Note that the resistance measurement falls in the interval between points (207,850 Ω, 10◦C)
and (197,560 Ω, 11◦C).

2. To �nd the linear interpolation equation we'll �rst determine the slope:

m =
∆y

∆x
=

∆T

∆R
=

T2 − T1

R2 −R1

=
11◦C− 10◦C

197560Ω− 207850Ω
= −9.718× 10−5

◦C

Ω

3. Now by subbing one of our points into an equation using the above slope we get

y = mx+ b→ 10 = (−9.718× 10−5
◦C

Ω
) ∗ (207, 850Ω) + b

This yields b = 30.20◦C

4. We can now determine the temperature that corresponds to the resistance we measured.

T = mR + b = (−9.718× 10−5
◦C

Ω
) ∗ (200, 000Ω) + 30.20◦C = 10.76◦C

Note the reasonableness of this answer. Not only does it fall in our range, but it is closer to
11◦C as one would expect based on resistance.
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PHYSICS 120 - EXPERIMENT 1

Thermal Expansion of Metals

1 Introduction

Most materials expand when heated and contract when cooled. From experiments on rods and
wires, it is found that the fractional change in length is usually proportional to the change in
temperature, a relation that can be expressed concisely as

∆L

L
= α∆T (1)

where L is the original length, ∆L is the change in length (i.e. �nal length minus initial length), and
∆T is the change in temperature (i.e. �nal temperature minus initial temperature). The symbol
α is a temperature-independent constant of proportionality called the thermal coe�cient of

linear expansion.

The interesting physical content of Eq. (1) is contained in

� the numerical value of α, which depends on the type of material

� the sign of α, which is positive for materials that expand when heated (See Giancoli 17-4 for
more details).

It is a challenging problem in solid-state physics and beyond the scope of this course to predict
α, which could only be done from quantum mechanical theory and from knowledge of the crystal
structure of a particular material. However, it is a test of any theory to compare predictions
with experimental measurements and our goal in this experiment will be to measure α for several
di�erent metal rods and compare those with expected values.

Figure 1: Diagram of the thermal expansion apparatus.
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2 Procedure

The parts of the apparatus described in this section are illustrated in Figure 1 on the previous
page.

1. Carefully measure the distance between the black lock-rings mounted on the copper, alu-
minum, and brass rods using a meterstick. Record these values and their respective uncer-
tainties in the table at the end of this handout. Minimize handling the metal rod with your
hands so that it remains at room temperature.

2. Insert your metal tube in the apparatus. First, slip the smaller lock-ring into the slotted
mounting block at the opposite end from the dial indicator. You may have to loosen the
silver set screw to allow the lock-ring to slip into its slot. When it does, gently tighten the
set screw. The larger lock-ring should be in contact with the spring-loaded arm of the dial
indicator�you will need to gently push back the movable pointer of the dial indicator to allow
the sample rod to slip into place. The sample rod should now be sitting securely in the ap-
paratus, with the smaller lock-ring �xed in position by the set screw and the larger lock-ring
resting against the movable pointer of the dial indicator, so that the dial will measure the
expansion of the tube.

Figure 2: Dial indicator, movable pointer, and lock-ring.

3. Connect the thermistor jack into its socket near the sample rod end opposite the dial indi-
cator.

4. Connect the digital multimeter to the terminals on the apparatus below the thermistor jack.
On the multimeter, use the terminals labeled COM and V/Ω and set the rotary switch for the
200 kΩ range - during the experiment, try lower ranges and use the lowest (most sensitive)
range that gives a reading. Record the reading, which will be a resistance in kΩ, and its
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uncertainty. Assume the meter's uncertainty is ±0.5% plus ±1 in the last digit. You can
convert the reading into a temperature in ◦C using the calibration chart below (the same
chart is provided on a card attached to the apparatus). Use linear interpolation to convert
the resistance reading to a temperature value, reporting your temperature to the nearest
tenth of a degree. Assume the temperature measurement uncertainty is ±0.3 ◦C.

5. If needed, �ll the reservoir of your steam generator with water from the tap, and connect
the rubber hose to your metal tube. Position a cup to catch condensed hot water at the end
of the tube.

6. Push the center ON/OFF button on the dial indicator to power it on, then the ZERO but-
ton. Check that the display is reading in millimeters (there is an in/mm button if needed.)
Do not touch or bump the apparatus again until the experiment is over - the dial indicator
reads in 0.01 mm of displacement and is sensitive to small bumps.

7. Wait until the water is boiling and steam is coming out of the tube. Be extremely careful

to keep away from the steam output. Wait several minutes for the temperature reading
to stabilize - you'll probably need to change to a more sensitive scale on the multimeter.
When the reading is stable, record the �nal temperature and the �nal dial indicator reading
and turn o� the heat.

Wait about 5 minutes for the parts to cool before attempting to disconnect the steam hose
and disassembling the apparatus to prepare for the next experiment.

8. Do a quick calculation of the thermal expansion of your metal rod and check how it com-
pares to the expected value (see Question 3). If you have extra time, your precision can be
improved by repeating the experiment and averaging the results.
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3 Questions

1. Suppose that a student, Cal I. Brator, is performing the thermal expansion experiment and
obtains the following data for their aluminum rod sample:
initial length = 35.00± 0.03 cm
change in length = 0.63± 0.01 mm
initial temperature = 23.0± 0.3◦C
�nal temperature = 94.0± 0.3◦C.
(Writing that the measured length was 35.00±0.03 cm means that the actual length may be as low

as 34.97 cm or as high as 35.03 cm or any value in between.)

(a) Ignoring uncertainties, calculate the value of α from Cal's data.

(b) Taking uncertainties into account, calculate the largest possible value of α consistent
with Cal's data and also the smallest possible value of α. Show all your calculations.

(c) Report Cal's answer for α in the form X ± Y , where X is the value you found in (a)
and Y is the uncertainty in your calculation taken to be Y = (αmax − αmin)/2.

(d) Using linear interpolation (see page xix), determine the temperature corresponding to
a measured resistance of 13,000 Ω.
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2. Calculation: Using your data, calculate the thermal coe�cients of linear expansion for (i)
copper, (ii) brass, and (iii) aluminum. Give numerical values and proper units, and fully
show and explain your calculations. In this part, you only need to calculate α, not its
uncertainty.

3. Percent Error: The CRC Handbook of Chemistry and Physics gives the following values
for the thermal expansion coe�cients: αAl = 23.4× 10−6 ◦C−1, αCu = 16.6× 10−6 ◦C−1, and
αBr = 18.7 × 10−6 ◦C−1. Calculate the percent errors in your measured values, taking the
CRC data as the �accepted values.� Recall that percent error is given by

% error = (measured value - accepted value)/(accepted value) × 100%.

When you report percent error, do not use an unreasonable number of non-signi�cant digits
- typically, one reports one digit for percent error (at most two digits).

4. Uncertainty: Calculate and report the uncertainty for your results in the manner described
in Question 1. It is su�cient to show your calculations in detail for just one of the samples,
but report your results (in the form value± uncertainty) for all of the samples.

5. Consistent Results: Do your measurements agree with the accepted values? (Important

Note: A measured value is generally said to agree with an accepted value if the di�erence
is within twice the uncertainty.)

6. Systematic error: Our current estimation of the uncertainty may not have accounted for
all types of uncertainty. Returning to Question 1: Suppose the rod in Cal's experiment
initially (i.e. when he placed it in the steam tube) had a temperature a few degrees above
room temperature (say 27.0◦C), but Cal incorrectly assumed that the rod was at room
temperature (say 23.0◦C). Ignore all sources of experimental error other than this improper
calibration of the initial temperature in Cal's measurements for this question.

(a) Will Cal's reported value of α to be too high or too low?

(b) What percent error will result from this mistake?

Be sure that you have read Guidelines for Preparing Laboratory Reports before
completing and handing in your lab report.

Rod Initial L (cm) ∆ L (mm) Initial T (◦C) Final T (◦C)

Aluminum

Copper

Brass
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PHYSICS 120 - EXPERIMENT 2

Ideal Gases: Laws of Boyle and Gay-Lussac

1 Introduction

At room temperature and atmospheric pressure, air molecules (primarily nitrogen and oxygen)
are widely separated and interact very weakly with each other. The physical properties of air (or
any gas) under these conditions can be predicted accurately even when neglecting the weak inter-
actions between molecules and imagining an ideal gas of point-like particles that whose motions
are perfectly independent, una�ected by the motions of the other particles. This ideal gas model
is very useful for describing most gases over a wide range of pressure and temperature.

The equation of state of an ideal gas, usually called the ideal gas law, was not discovered in its
current well-known form PV = nRT . Instead, binary relationships between each pair of variables
P , V , and T were found �rst and are named after their discoverers. Robert Boyle (1627-1691)
observed that pressure of a gas varies inversely with the volume; Jacques Charles (1746-1823)
observed a linear relation between the volume and temperature of an ideal gas; and the picture
was completed when Joseph Gay-Lussac (1778-1850) observed a linear pressure-temperature re-
lationship. In this experiment, we will work to duplicate both Boyle's and Gay-Lussac's �ndings
and use these results to determine the zero point of absolute temperature or what is commonly
known as absolute zero.

2 Procedure

I. Boyle's Law Experiment:

In this experiment we will investigate the relationship between pressure and volume. We
will require a thermistor, a syringe piston, a pressure sensor, and a PC running LoggerPro.
Con�rm that the pressure sensor and thermistor are plugged into channels 1 and 2 of the
LabPro device and reading properly.

1. Measure and record room temperature with the thermistor.

2. Adjust the syringe piston so that it reads 10.0 cc (cubic centimeters). Make sure the
valve on the pressure sensor is open (the plastic handle should be parallel to the tubing
connecting the pressure sensor and the syringe). Connect the syringe to the pressure
sensor by carefully twisting the plastic luer-lock connector on the tubing from the sensor
onto the syringe tip.

3. Set the pressure units to kPa and temperature to Celsius. Since the pressure should be
room pressure with the piston at 10 cc, the reading should be near (but probably not
exactly) 1 atm.

4. Carefully pull the syringe piston out to the 20 cc mark. Record the pressure, and then
advance the piston position in 2 cc steps in to the 6 cc mark. Make sure you record

the pressure at each piston position. Then, take one more reading with the piston
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at the 5 cc mark. Do not advance the piston beyond the 5 cc mark, as this

may result in damage to the pressure sensor. Try to perform this relatively quick
as this will lessen the risk of a slow leak of air past the piston and compromised data
(due to systematic error from the leak).

II. Gay-Lussac's Law Experiment:

In this experiment we will investigate the relationship between pressure and temperature.
We will require an electrically heated water bath, copper chamber, mounting clamp, pressure
and temperature sensors, and PC running LoggerPro.

Figure 1: Apparatus for the Gay-Lussac Law Experiment

1. Fill the reservoir in your water bath about half full of water at room temperature, so that
the copper chamber can be mostly immersed without the reservoir over�owing. Keep the
rubber tubing above the level of the water in the bath. Adjust the mounting clamp to hold
the copper chamber in the water bath. Make certain that the copper chamber is not in
contact with the bottom or the walls of the reservoir.

2. When the copper chamber is in position, check that the thermistor sensor and the pressure
sensor are connected to the LabPro interface and set up the Logger Pro software to record
the temperature and pressure. To do this choose Experiment → Data Collection, then
con�gure the software to acquire data at 5 second intervals and check the continuous data

collection box. Place the thermistor in the water bath next to the copper chamber.

3. Turn on the heater with the heating power set around 60% of maximum and click start

to begin acquiring data. Gently stir the water bath with the thermistor sensor to minimize
temperature gradients in the bath and maintain continual gentle stirring throughout the
experiment. Avoid contacting the metal walls of the reservoir with the thermistor to ensure
that it accurately reads the water temperature.

4. When the bath temperature reaches 90◦C, stop data collection and turn o� the water heater.
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5. To plot or analyze your data, you can transfer your LoggerPro data to another program like
Excel by simply selecting (highlighting) your data, copying (Ctrl-C) from LoggerPro, and
then pasting (Ctrl-V) in Excel.

3 Questions

1. Boyle's Law:

(a) Starting with the ideal gas law, derive algebraic expressions for the slope and y-intercept
of a plot of pressure P vs. inverse volume V −1 of a gas, in terms of the constants n, R,
and/or T , where T is the temperature in Kelvin. (Recall that a plot of A vs. B means
that A is on the y-axis and B is on the x-axis.)

(b) Plot your data for the Boyle's Law experiment, P vs. 1
V
. Use standard metric (MKS)

units. Use plotting software such as Excel to �t a straight line through your data. Is
your plot consistent with Boyle's Law? Explain brie�y.

(c) Making use of the slope from best-�t line, calculate the total number of gas molecules
(N) con�ned in the piston in your experiment. Show your work and explain your
reasoning clearly.

(d) What is the uncertainty in your value for N? (Hint: You will need to again consult
the parameters from your best-�t line and read over the page �Uncertainty in the slope
and y-intercept of a linear �t� on page xviii.)

(e) Report your result for the number of gas particles in the piston in your experiment
complete with uncertainty in the form N ± δN , using the proper number of signi�cant
�gures for N and its uncertainty δN .

2. Boyle's Law II:

Suppose room temperature increases during the Boyle's Law experiment (assume the gas in
the syringe remains in thermal equilibrium with the room at all times). Sketch how the plot
in Question 1(a) would be e�ected. If the change is small so the plot still approximately
resembles a line, does the measured slope increase, decrease, or remain the same? Explain.

3. Gay-Lussac Law:

(a) Start with the ideal gas law in the form PV = nR(T0 + T ), where T0 is an unknown
quantity with units of degrees Celsius and T is the temperature in degrees Celsius.
Derive algebraic expressions for the slope and y-intercept of a plot of temperature T
(◦C) vs. pressure P . Express your answers in terms of the constants n, R, V , and/or
T0.

(b) Plot your data for the Gay-Lussac Law experiment, T (in ◦C) vs. P (in N/m2). Check if
your plot supports the Gay-Lussac Law, which predicts that temperature is proportional
to pressure for a �xed volume of gas. Check proportionality by �tting with a straight
line and considering the quality of the �t. Comment on if your results con�rm the
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Gay-Lussac Law and how well they seem to support the expected proportionality. Be
as quantitative as possible.

(c) T0 is the zero point of absolute temperature in degrees Celsius. Using the expressions
for slope and intercept you derived above and the numerical values of the slope and
intercept from the best-�t line on your plot, �nd the value of T0 predicted from your
measurements.

(d) Determine the uncertainty (δT0) on your value for absolute zero. Again, see page xviii.
Express your result for T0 in the form T0 ± δT0 with units and an appropriate number
of signi�cant digits. Does your result agree with the expected value? Is your result
consistent within the range of uncertainty or is some signi�cant error present? Explain,
and again be quantitative whenever possible.

4. Systematic Uncertainty:

(a) What would your data look like if you failed to ensure that the gas remained at the
same temperature as the water (i.e. the gas warmed more slowly than the water)?
Sketch a rough plot of the hypothetical data. (Don't just do this without thinking,
take some time and think about it and explain your reasoning.)

(b) What e�ect would this have on your determination of absolute zero? (Think about
your answer to part (a) as that should help you visualize.)

5. Ideal Gas Law:
The ideal gas law predicts the behavior of most real gases over a large range of conditions
quite accurately. What does this fact suggest about the validity of ignoring interactions
between molecules in a real gas?
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PHYSICS 120 - EXPERIMENT 3

Specific Heat of Metals

1 Introduction

When an object is warmed, heat �ows into the object (Q > 0) and its thermal energy increases
(Uth > 0). Similarly, when an object cools, the object loses thermal energy (Uth < 0) as heat
�ows from the object (Q < 0). The heat �ow Q is proportional to the object's mass m and to the
change in temperature ∆T , given by

Q = mc∆T (1)

where c is a proportionality constant called the speci�c heat and has units cal
g◦C

. The value of c
depends only on the type of material under investigation and is independent of mass and approx-
imately independent of temperature. One can interpret the speci�c heat (c) as the quantity of
heat required to raise the temperature of one gram of material by one degree Celsius. The energy
unit of a calorie (cal) is related to a Joule by 1 cal = 4.184 J.

When two objects at di�erent temperatures are placed in thermal contact, the objects exchange
energy and come to thermal equilibrium at an intermediate temperature. Said another way, heat
(Q) will �ow from one object to another so long as there is a di�erence in temperatures (i.e. a
temperature gradient). If the objects (A and B) are isolated from their surroundings, then we
would expect energy to be conserved and thus the total change of thermal energy for the system

(A and B) should be zero:

∆Usystem = ∆UA + ∆UB = QA +QB = 0 (2)

which implies that
∆UA = −∆UB, or equivalently QA = −QB (3)

This means the heat that �ows from object A is equal to the heat that �ows into object B.

If the objects are thermally isolated from their surroundings in an apparatus called a calorime-

ter and the temperature changes are measured accurately, the experiment can be used to gain
information about the thermal energy storage capacity, or heat capacity, of the objects.

We will measure the speci�c heats of samples of pure aluminum, copper, and lead using calorime-

try:

� Each metal sample will be heated to a known initial temperature and placed into a known
quantity of water at a measured initial temperature.

� After thermal equilibrium is reached, the �nal temperature of the water/metal system can
be measured.

� The speci�c heat of water is exactly 1 cal
g◦C

(this actually serves as the de�nition of the

calorie).
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� The calorimeter apparatus used is basically a closed Styrofoam cup which provides excellent
thermal isolation and has negligible heat capacity.

2 Procedure

1. Fill the reservoir of your electrically heated water bath to a level 2 cm below the top. The
optimum water level is even with the lower edge of the embossed ring near the top of the
reservoir. Check that the sample cup (dipper) �ts into the top lid of the reservoir without
causing the bath to over�ow. Then turn on the bath with the power level set on maximum.

2. Dry your sample cup, then weigh it on the triple beam balance. Next, �ll the sample cup
with the aluminum sample material and weigh again to determine the mass of the aluminum.
Place the tip of a glass thermometer in (or near) the aluminum shot. Then place the sample
cup in the aperture in the lid of the water bath, so that the aluminum is in good thermal
contact with the bath. Wait until the aluminum shot has reached a constant temperature.
This may take around 10 minutes and should be approximately 90◦C.

3. Carefully blot dry your Styrofoam calorimeter and weigh it on the triple beam balance. Wait
until your metal shot in the boiling cup is hot enough before proceeding to the next step.

4. Add roughly 60 mL of water to your calorimeter cup. Optimally, the water should be several
degrees cooler than room temperature, although this is not crucial. Carefully dry the outside
or lip of your calorimeter cup to remove any external drops of water. Weigh the cup+water
to determine the water mass. Cover the calorimeter, insert the thermistor probe through
the access hole in the top cup, and measure the initial temperature of the water. Logger Pro
should allow you to measure this temperature to 0.1◦C precision.

5. Note and record the temperature of the metal shot in the �ask. Using gloves or a towel to
protect your hands, remove the stopper with the mercury thermometer, the �ask from the
boiler, then quickly blot the bottom dry and transfer the metal shot to your calorimeter
without splashing any water out. Immediately replace the top cover of the calorimeter and
gently swirl the contents for about 30 seconds so the metal and the water reach thermal
equilibrium. Then, insert the thermistor probe through the access hole and measure the
temperature of the water in the calorimeter. (If you wait awhile, you may observe a slow
decrease in the water temperature as the calorimeter contents cool to room temperature.)
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6. When �nished, carefully decant the water from the calorimeter into a waste vessel. Then
carefully transfer the shot onto some paper towels and blot dry. Once dry, use a funnel to
replace the shot in its storage bottle.

7. Repeat the procedure for the aluminum, copper, and lead samples. As usual, if time allows,
you can improve your accuracy by repeating trials and averaging results.

3 Questions

1. Using your data, calculate the speci�c heats of copper, aluminum, and lead. Show your
results and a sample calculation.

2. The CRC Handbook of Chemistry and Physics gives the following values for the speci�c
heats: 0.031 (Pb), 0.215 (Al), 0.092 (Cu) in units of cal

g◦C
. Calculate the percent error from

these accepted values for the values you found.

3. For lead, �nd the maximum range of uncertainty in your measurement. Report your answer
in the form: value ± uncertainty, with an appropriate number of signi�cant digits and proper
units. Show your calculation. Does your error fall within this range of uncertainty?

4. Do the errors found in question 2 appear to be random or systematic? Explain your reason-
ing.

5. Suppose a small quantity of water at 100◦C were carried over with the metal sample and
deposited in the calorimeter. Would this cause a measured value of c that is too low or too
high? Explain.

6. The product mc is called the heat capacity and denoted C. What is the heat capacity of
each of the three metal shot samples you measured?

7. Suppose a 2.00-kg mass of lead at 99.0◦C with a speci�c heat of 0.031 cal
g◦C

is dropped in
a well insulated cooler with 10.0 liters of water at a temperature of 10.0◦C . What is the
equilibrium temperature?

8. Suppose a 1.00-kg mass of lead at 99.0◦C with a speci�c heat of 0.031 cal
g◦C

is dropped in a

lake. How much heat will �ow from the lead if the lake temperature is 10.0◦C? (Do we need
to know how much the lake warmed to solve this problem? If not, why not?)
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PHYSICS 120 - EXPERIMENT 4

Latent Heat of Fusion and Vaporization

1 Introduction

Consider a sample of ice that is being warmed by some source.

� When the sample of ice is warmed, its temperature increases as it heat (Q) �ows into it and
its thermal energy increases (∆Uth > 0), until it begins to melt at 0◦C.

� At that point, the sample temperature does not increase while heat is added to the system;
instead, the ice in the sample gradually melts to water at 0◦C as the thermal energy continues
to increase.

� Increasing the rate of heat transfer to the ice-water system does not increase its temperature
but instead increases the melting rate of the ice.

When we encounter this phenomenon we are encountering the phenomenon known as latent heat
where additional heat must be added or removed from a material in order for it to undergo a phase
transition.

� The amount of heat (Q) needed to melt a given sample of ice depends only on the mass m
of ice and is given by

Q = mLf (1)

where Lf is a constant called the latent heat of fusion of ice. If we continue to add heat to
the water after the ice has melted, its temperature increases in accordance with the relation

Q = mc∆T (2)

as we observed last week (where c is the speci�c heat of liquid water).

� Once the water begins boiling (at 100◦Cat 1.00 atm of pressure), further addition of heat
does not increase its temperature; instead, the water sample continues to boil and to form
steam.

� Again, increasing the rate of heating does not change the temperature but instead increases
the rate of conversion of the liquid to gas.

� The quantity of heat Q required to convert a mass m of water to steam at the boiling
temperature is given by

Q = mLv (3)

where Lv is a constant called the latent heat of vaporization. One can interpret the latent
heat of vaporization as the energy di�erence (per unit mass) between steam and water: the
water molecules in steam have a considerably higher average velocity, hence more kinetic
energy per molecule, than the molecules in liquid water and thus a greater thermal energy.
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The latent heats of fusion and vaporization are material-dependent constants having di�erent
values for di�erent substances. In this experiment, we will use calorimetry to measure the latent
heats of fusion and vaporization of water.

2 Procedure

2.1 Latent Heat of Vaporization

1. Fill the reservoir of your electric steam generator, put the lid in place, and check that the
rubber tubing is securely connected from the output port of the steam generator and to the
water trap. If necessary, drain excess water from your water trap (the lab instructor can
assist with this). Then turn on your heater and set the power level to maximum.

2. Gently blot dry (if necessary) and then weigh your Styrofoam calorimeter (both sections
together). Use the electronic balance for best accuracy; check that the readout is in units of
grams.

3. Fill the calorimeter with approximately 100 mL of water near room temperature. Weigh the
�lled calorimeter to �nd the water mass, using the electronic balance. Insert the thermistor
probe in the calorimeter and determine the initial temperature. Wait until steam is being
copiously produced from the output port of your water trap before proceeding.

4. Remove the thermistor and insert the steam tube (from the output of the water trap) into
your calorimeter so that it is below the level of the water. Allow steam to �ow into your
calorimeter for about 60 seconds, until the water temperature has risen at least 10-20◦C.
After this time, remove the steam tube, gently swirl the contents of your calorimeter so that
it reaches thermal equilibrium, and measure the temperature with the thermistor. If the
temperature has not increased by at least 10◦C, re-insert the steam tube to introduce more
steam.

5. After recording the �nal calorimeter temperature, weigh the �lled calorimeter again on the
electronic balance to determine the mass of the condensed steam that has been added to the
system.
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2.2 Latent Heat of Fusion of Ice

1. Fill the calorimeter with about 100 mL of water, approximately 5 or 10◦C above room tem-
perature. Use an ordinary triple beam balance to determine the water's mass. Insert the
thermistor and �nd the initial temperature.

2. Blot dry several pieces of ice (about 2-3 cubes worth or 20 g) using paper towels and add
them to the calorimeter. Avoid splashing out any water and avoid touching the ice with your
hands.

3. Gently swirl the calorimeter for 30 seconds or so until the ice melts. Insert the thermistor
probe and measure the minimum temperature attained. (If you wait, you will observe the
calorimeter contents slowly warming to room temperature.)

4. Weigh the �lled calorimeter to determine the mass of the added ice.

3 Questions

1. Suppose your data for the latent heat of vaporization experiment were: initial water tem-
perature = 19.50◦C, �nal water temperature = 41.20◦C, initial water mass = 65.10 g, �nal
water mass = 67.30 g.

(a) Present an algebraic expression for the latent heat of vaporization (LV ).

(b) What is the latent heat of vaporization LV (in cal
g

) based on the data given here?

(c) What is the percent error from the standard (accepted) value of the latent heat of
vaporization given in your textbook? Show your calculations.

2. Calculate the latent heat of vaporization (LV ) of water from your data. Report your result
and its uncertainty; give your result in the form LV ± δLV with appropriate number of
signi�cant �gures. Show all your calculations.

3. Look up the accepted value for the latent heat of vaporization and calculate the percent
error for your value in Question 2.

4. Is your measurement consistent with the accepted value? Explain. (Again recall that it is
generally considered to be �in agreement� if your result is within twice the uncertainty.)

5. Calculate the latent heat of fusion (LF ) of water from your data. Report your result and its
uncertainty; give your result in the form LF ± δLF with appropriate number of signi�cant
�gures. Show all your calculations.
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6. Systematic Error:

(a) What is the function of the glass water trap?

(b) Suppose your data for the Latent Heat of Vaporization experiment were the same as
those in Question 1: initial water temperature = 19.50◦C, �nal water temperature =
41.20◦C, initial water mass = 65.10 g, �nal water mass = 67.30 g. If 0.10 g of the
incoming steam condensed in the output tube of the water trap and dripped into your
calorimeter (assume the drops are at 100.00◦C), what percent error would result due
to this oversight (�error� in this case is the % deviation from the calculated result, not
the accepted value)? Would your value of LV be too high or too low?

7. Suppose that after your initial weighing of the perfectly dry calorimeter, a small drop of
water, unnoticed by you, splashed onto and adhered to the outer wall of the calorimeter
during the entire Latent Heat of Fusion experiment, remaining at its initial temperature.
Would your value of LF be too high or too low? Explain.
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PHYSICS 120 - EXPERIMENT 5

Simple Harmonic Oscillations of a

Mass-Spring System

1 Introduction

Simple harmonic oscillation is one of the most important topics in physics for two reasons. First,
oscillations give rise to waves, and many interesting physical phenomena are wave phenomena�
including sound, light, and even the structure of atoms (described by the theory of quantum
mechanics). Second, simple harmonic oscillations are relatively simple to understand, and an
elegant mathematical result called Fourier's Theorem allows us to express arbitrary non-simple
oscillations of a system as a superposition of simple harmonic oscillations. This interesting subject
is explored further in later physics courses.

The simplest simple harmonic oscillator (SHO) consists of a mass m coupled to a spring with
spring constant k, sliding on a frictionless surface (see Fig. 1). Suppose the mass is displaced by
a distance x from the equilibrium point xeq (where the spring is neither stretched nor compressed).
The stretched spring then pulls the mass back toward equilibrium with a force F = −k(x − xeq)
or F = −kx if we choose the equilibrium position to be the origin of our coordinate system
(xeq=0).

Newton's second law gives Fnet = ma for the force on the mass, where a is the acceleration of the
mass m. Thus, we have

ma = −kx. (1)

Dividing by the mass m, we have

a = − k
m
x = −ω2x (2)

in which we have de�ned a new symbol ω =
√

k
m
, which is called the angular frequency.

We see that since ω2 > 0, whenever x is positive, the acceleration (a) will be negative. Whenever
x is negative, a will be positive. In other words, whenever the spring is stretched, the mass is ac-
celerated in the negative direction toward the equilibrium point. Conversely, whenever the spring
is compressed the mass is accelerated in the positive direction, again toward the equilibrium point.

Figure 1: A simple harmonic oscillator. The
elastic constant of the spring is k, the mass
is m, and x denotes the displacement of the
mass from its equilibrium position at x =
0. At the equilibrium point, the spring is
neither stretched nor compressed.
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Since the mass arrives at the equilibrium point with some velocity, it overshoots the equilibrium
point, thus repeating the process and producing oscillations.

Equation (2), which relates the position and acceleration of the mass, is called the equation
of motion and has the general solution

x(t) = A cos(ωt+ φ), (3)

where A and φ are constants depending on the initial conditions of the systems when it is initially
set in motion. A is called the amplitude of the oscillation; it is the maximum displacement from
the equilibrium point the mass attains. The constant φ is called the phase constant and indicates
the mass's relative position at the starting time.

Using calculus, it is easy to substitute expression (3) into Eq. (2) and, by recognizing that
the acceleration is the second derivative of position with respect to time (a = d2x

dt2
), you can show

that expression (3) satis�es the equation of motion. Those that are not familiar with using cal-
culus must content themselves with the qualitative argument, and the plausible reasoning that
oscillations of the mass ought to be described by an oscillating function such as cosine.

In this week's lab, we will investigate oscillations in a mass-spring system. We will explore the
dependence of the oscillation period on the mass and elastic constant of the spring. Also, we will
explore some interesting behavior of a system consisting of two simple harmonic oscillators coupled
together. Relevant reading includes sections 14.1-14.2 and 15.6 of Giancoli. If you are
feeling overwhelmed with this new material, the textbook is a GREAT place to start looking for
help!

2 Procedure

1. Spring Calibration:

Measure the spring constant of springs labeled spring #1 and spring #2. To do this, �rst
suspend one of the springs vertically and note its equilibrium position. Next, suspend a
series of about six di�erent masses (e.g. 50-100 grams, step by 10 grams) from the spring.
For each mass, measure the increase in the length of the spring beyond its rest length and
record it in the table below. (Repeat this process for the other spring).

When the mass is hanging from the spring and is motionless (thus de�nitely not accel-
erating), the net force on the mass must be zero by Newton's 2nd law

Fnet =
∑

F = Fspring + Fgravity = −k(x− xeq) + (−mg) = 0. (4)

In other words, the upward (positive) force from the spring must just balance the down-
ward (negative) gravitational force. If we chose xeq = 0, we can rearrange our second law
expression to get:

kx = −mg. (5)

Note that we have a linear relationship between the displacement x and the mass m. Also,
note that our displacement due to the hanging mass is down which is negative as de�ned
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here. This data can be plotted and the spring constant determined from the slope of a
straight-line �t (see Question 1). It is likely useful to recall that g = 9.80 m/s2 is the accel-
eration due to gravity near the surface of the Earth.

Spring 1 | Spring 2

Mass (g) Displacement (cm) Mass (g) Displacement (cm)

2. Simple Harmonic Oscillator:

Figure 2: A simple harmonic oscillator using one mass and two springs.

Set up the system shown in Fig. 2 above using springs #1 and #2. Connect spring 1 to one
end of the air track and the glider. Connect spring #2 to the other end of the glider and to
a bar mounted roughly 2/3 of the way down the air track. Allow the system to come to rest,
and note the equilibrium position of the glider on the centimeter scale on the air-track (you
may use the left or right edge of the glider as a reference position). Displace the glider a few
centimeters from its rest position and observe the resulting oscillations (i.e. play a little bit!).

Find the Mass Dependence of a Simple Harmonic Oscillator: First, �nd the mass
of the air-track glider using a balance. Then measure the oscillation period as a function of
glider mass. The period of oscillation is the time required for the glider to execute a complete
back-and-forth motion; it is convenient to measure 10 periods and then divide the result by
10 to get the time for one period. You want to measure the period for several di�erent glider
masses so you will need to vary the glider mass by adding masses symmetrically (equal mass
added to left and right sides of the glider). Use �ve di�erent masses, with a maximum of 200
grams. Check �rst that with 200 g the glider does not experience signi�cant friction with
the air-track � if it does see the lab instructor.

Record your results in the table below:
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Simple Harmonic Oscillator

Mass (g) Period (sec) ω (rad/s)

3. Coupled Harmonic Oscillators:

Set up the system shown in Fig. 3. Find the mass of both gliders using a balance and record
the results. Be sure that the outer springs are labeled spring #1 and spring #3 (they are
treated as having the same spring constant k1) and the inner spring is labeled spring #2.
Now hold the left glider still while displacing the right glider from equilibrium, and release
from rest. The oscillatory motion of the gliders about their equilibrium positions is rather
complicated!

Figure 3: Coupled harmonic oscillators.

Despite the apparent complexity of an arbitrary oscillation, this system has two very simple
modes of oscillation in which all the parts move at the same frequency. To see one such
mode, pull each glider the same distance to the right of equilibrium, and release from rest.
The masses move together in simple harmonic oscillation. This mode is called the symmet-

ric mode of oscillation. Measure and record the period of the symmetric mode of

oscillation.

Now we will examine the other simple mode of oscillation. Pull the masses apart, pulling
each mass an equal distance away from equilibrium, and release from rest. Note that the
masses move toward each other, then away from each other, in alternating cycles. Each mass
alone is undergoing simple harmonic oscillation about its equilibrium point. This mode is
called the anti-symmetric mode of oscillation. Measure and record the period of

the anti-symmetric mode oscillation.

It turns out that any other oscillation that you might observe with this system is �sim-
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ply� a weighted combination (or superposition) of these two modes of oscillation going on
at the same time.

3 Questions

1. Recall the relation kx = −mg discussed in Procedure 1. Make appropriate plots to �nd the
spring constants of springs #1 and #2 using your data from Procedure 1. Decide which
quantities should be plotted on which axes and deduce the spring constant k from the slope
of your plot. Be sure to calculate the uncertainty of k. Explain your reasoning brie�y, and
report your values for k in the form value± uncertainty with appropriate signi�cant digits
and units.

2. (a) Write down Newton's second law (
∑
F = ma) to describe the horizontal forces on the

glider in Procedure 2 in which you to observe the mass dependence of the SHO. Your
equation should contain only the variables k1 and k2 (spring constants), x (displacement
of the glider from equilibrium), m (mass of the glider), and a (acceleration of the glider).
You should have two di�erent horizontal force terms, one for each spring.

(b) Compare the equation of motion you wrote in part (a) with the equation of motion for
a SHO (Eq. 1). Knowing that the angular frequency ω of the oscillator in Eq. (1) is

ω =
√

k
m
, what is the predicted angular frequency of the glider in Procedure 2? Express

your answer in terms of the given symbols. (Hint: The equations are very similar�you
can �nd a letter-by-letter analogy. Which combination of constants in the equation of
motion you wrote in part (a) functions like the k in Eq. (2)?)

(c) Plot ω2 vs. 1
m
, using the data taken in Procedure 2. Note that angular frequency (ω)

is related to the measured period (T ) by ω = 2π/T .

(d) Considering your answer to part (b), what should the slope of the plot be, in terms of
k1 and k2? First �nd an algebraic expression and then a value, using the values for k1

and k2 determined in Question 1. What is the uncertainty in this prediction (based on
the uncertainties of k1 and k2)? Report your answer in the form: value± uncertainty,
with an appropriate number of signi�cant digits and proper units.

(e) Compare the measured slope from part (c) to the predicted slope from part (d). Include
your uncertainties! Do your values agree with each other? Explain.

3. In this question, we will compare the oscillation periods of the coupled SHO system to the
periods predicted from Newton's laws.

(a) Symmetric mode: Since the middle spring remains unstretched, we can treat it as
a rigid, massless rod joining the two gliders. E�ectively, we have a single rigid object
of mass equal to twice the mass of a single glider cart connected to two equal springs

of spring constant k1. The oscillation frequency should thus be ω =
√

2k1
2m

=
√

k1
m
.

Find the percent di�erence between this prediction and the observed angular frequency.
(Assume both gliders have the same mass, equal to the average of the two measured
masses).
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(b) Anti-symmetric mode: Once again, we focus our attention on the middle spring. The
middle spring is alternately stretched and compressed symmetrically about its center
point in this mode. In fact, the center point of the middle spring never moves! So we
can imagine attaching this point to a �xed support, thus separating the system into two
completely separate, non-interacting systems on the left and right. The spring constant

of a half-spring is 2k2, so the angular frequency is ω =
√

k1+2k2
m

, by an argument

identical to the one used in Question 2(b). Find the percent di�erence between this
prediction and the observed angular frequency for the anti-symmetric mode.
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PHYSICS 120 - EXPERIMENT 6

Standing Waves on a String

1 Introduction

A standing wave is the simple harmonic motion of a continuous system, with the various parts
of the system moving together at the same frequency and phase. Examples of standing waves in
familiar systems range from sound waves in trumpets and organ pipes or oscillations of a guitar
string to the electron probability distribution in an atom. In this experiment, we will explore some
properties of standing waves exhibited by a string with �xed ends in transverse oscillation.

Consider a thin string of uniform mass density µ held under tension force FT (see Fig. 1).
One end of the string is attached to a mechanical driver, a device that vibrates and thereby shakes
the string up and down, creating waves. The other end of the string passes over a pulley and
is attached to a mass m, so that the tension in the string is given by FT = mg, where g is the
acceleration due to gravity.

Figure 1: Standing waves on a string. (a) Equilibrium con�guration. (b) Second harmonic (n = 2)
mode of oscillation.

The motion of this mechanical system can be derived using the usual laws of mechanics, applying
F = ma to each small segment of string, and in fact the problem has a straightforward analytic
solution. It turns out that if the driver's motion is simple harmonic, each point on the string also
oscillates in simple harmonic motion about its equilibrium position, and all points on the string
moves together at the same frequency and phase. Furthermore, the standing wave is sinusoidal,
meaning that if you take a high speed photograph of the string at any instant, the string would
look like a sine function. The displacement (D(x, t)) of the string at any point x on the string at
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time t is given by

D(x, t) = D0 sin
(nπx
L

)
cos(ωt) (1)

where L is the length of the string, ω is the angular frequency of the driver, the constant D0 is the
amplitude of the motion (measured in meters), and n is a positive integer called the mode number
and corresponds to the nth harmonic.

We will not concern ourselves with the derivation of Eq. (1), but we will instead investigate some
properties of the standing waves. Note that D(x, t) is automatically zero at all times at x = 0 and
L = 0, the two ends of the string. (It may seem surprising that the string's displacement is zero
at the driver�this is really only approximately true. For small driver amplitudes, we can make the
string's displacement nearly zero at the driver.)

Points where the string's displacement is always zero are called nodes. When the mode num-
ber n = 1 (i.e. the �rst harmonic or the fundamental frequency), there are no other zeros of
the displacement (D(x, t)). When n = 2, there is a node (zero) at the midpoint of the string
(x = L

2
). When n = 3, there are nodes at x = L

3
and x = 2L

3
. We can understand the nodes in a

simple way: an integer number of humps of the sine function must �t on the string between its ends.

From the above reasoning, we know that the possible wavelengths of the standing waves on the
string are given by

λn =
2L

n
(2)

where λn is the wavelength of the standing wave when the string is oscillating in the nth harmonic.
We also make use of the general wave relation

v = λf (3)

where v is the velocity of waves on the string, λ is wavelength, and f is the frequency of the driver
producing the waves. Finally, to apply the general wave relation (3) to the speci�c problem of
waves on a string, we will use the fact that the velocity of waves on a string is given by

v =
(FT

µ

)1/2

(4)

where FT = mg is the tension on the string and µ is the mass density of the string.

We will investigate the standing waves on a string depend on the force of tension FT in the string
and the length L of the string. In the process, we will see that the driven string can oscillate in
standing wave modes with wavelengths given by Eq. (2).
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2 Procedure

1. Position the driver approximately 1.0 m from the pulley, and �x its position using a C-clamp.
Record the length of the string between driver and pulley. Turn on the driver (by plugging
it in). Now suspend some mass from the end of the string hanging over the pulley. You will
�nd that if just the right amount of mass is suspended from the string, the string begins
to oscillate with a large amplitude - at this point you have found a harmonic, or standing
wave! Your goal is to observe all the modes from second harmonic (n = 2) through the ninth
harmonic (n = 9) or higher. Record the mass m and the harmonic number n.

Two hints: The mass hanger is convenient to use when suspending large masses, but is
actually too heavy for several of the harmonics. The approximate condition for a harmonic
can be found by manually increasing or decreasing the tension (gently pulling down or lifting
up) on the string-this may help you locate a harmonic when you are near one.

L = cm

nth harmonic Mass (g) # of nodes # of antinodes Overtone
2
3
4
5
6
7
8
9

2. Fix the mass on the string to obtain the 5th harmonic (6 nodes, 4 nodes between the end-
points). Record the string length (driver to pulley). Then vary the length L of the string
by gradually moving the driver closer to the pulley. Record the string length L and the har-
monic number n whenever you see the string vibrate in a standing wave, for n = 2, 3, 4, and 5.

Mass = g

nth harmonic Length (cm)
2
3
4
5

3. Measure a length of similar string. Measure its mass.
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3 Questions

1. Using Eqs. (2), (3), and (4), derive a relation between the harmonic number n and the mass
m suspended from the string, in terms of the constants L (string length), g (acceleration
due to gravity), µ (mass density of the string), and f (frequency of the driver). Use symbols
(letters), not numbers. Show and explain all the steps in your derivation.

2. With the relation you derived in Question 1 in mind, make a plot of your data from Procedure
1 from which you can determine the mass density µ1 of the string. The driver frequency f
is 120 Hz. Explain clearly how you obtained µ1 from the plot. Be sure to determine
the uncertainty in µ1 after �nding the uncertainty in your slope and state your result and
its uncertainty in the form µ1 ± δµ1 with proper units and signi�cant digits.

3. Make an appropriate plot of the data from Procedure 2. Using the relation derived in
Question 1, determine µ2 from your plot. Explain clearly how you obtained µ2 from

the plot. Be sure to determine the uncertainty in µ2 after �nding the uncertainty in your
slope and state your result and its uncertainty in the form µ2 ± δµ2 with proper units and
signi�cant digits.

4. Calculate µ3 from Procedure 3. Be sure to determine the uncertainty in µ3 after �nding the
uncertainty in your slope and state your result and its uncertainty in the form µ3 ± δµ3

with proper units and signi�cant digits.

5. Are your results for µ1 µ2, and µ3 in agreement given your calculated uncertainties? Explain.
Are there overlap in any of the results? Are there any intervals in which all the results
overlap?

6. (a) Calculate the speed of waves on the �A string� of a guitar when it oscillates in the
fundamental mode (or 1st harmonic). The length of the string is 63.5 cm and the
frequency is 110 Hz.
(Extra information for those interested in the physics of music: The guitar A string is two

octaves below A440 Hz, the A above middle C. One can �nd the approximate frequency of

any note knowing that the A above middle C has a frequency of 440 Hz, and the frequencies

of the notes on the tempered scale are arranged approximately in geometric series with each

half-tone 12
√
2 times higher in frequency than the previous. If you proceed 12 steps up the

chromatic scale you will �nd you have doubled the starting frequency or gone an octave from

your starting note.)

(b) I weighed a 3.3 cm snippet of the A string on a good analytical balance and found the
mass to be 0.2039 grams. What is the mass density of the A string?

(c) Under what tension (in Newtons) must the string be if it is to have a fundamental
frequency of 110 Hz?

7. Sketch the 4th harmonic. Identify the nodes, anti-nodes and wavelength in your sketch.
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PHYSICS 120 - EXPERIMENT 7

Geometric Optics

1 Introduction

Many properties of light can be understood by thinking of light as a plane wave propagating in a
straight line, called a ray. Surprisingly, the wave nature of light is not relevant for understanding
many important optical devices, whose behavior can be understood in terms of the geometrical
properties of the straight-line light rays. A basic understanding of geometric optics is impor-
tant for workers in any technical �eld, since many laboratory instruments, such as telescopes,
microscopes, and camera lens systems, are optical or have optical components. We will investi-
gate some properties of thin lenses and verify some of the basic equations describing their behavior.

Arguably, the most important optical device is the thin lens. In today's lab, we will investi-
gate two classes of thin lenses: converging and diverging.

A converging lens is a piece of glass with curved surfaces, thicker in the middle than at its
edges. Often, because of ease of manufacture, the curved surfaces are sections of spheres. Using
simple geometry and Snell's Law of refraction: n1 sin(θ1) = n2 sin(θ2), it can be shown that par-
allel rays of light incident from the left along the axis of the lens are focused through a common
point to the right of the lens (see Fig. 1).

Figure 1: Ray Diagram illustrating the focal point of a converging lens.

This point, called the focal point (F ), is located along the principle axis of the lens a distance f
(the focal length) from the center of the lens. If a screen is placed one focal length (f) from the
lens, a bright point-like image will be visible on the screen. It turns out that the single length-scale
f completely describes the behavior of the lens. Suppose a light source (i.e. the object) is placed
a distance do to the left of a lens of focal length f . Then an image of the source/object will be
focused on a screen placed a distance di to the right of the lens. This image, formed by focused
light rays, is called a real image. The image distance di can be predicted by using the Lens
Equation:
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1

f
=

1

do
+

1

di
. (1)

Using some geometry, it can also be shown that the image is magni�ed (or reduced) in size
compared to the size of the source. If ho is the diameter (or height) of the source, then the
diameter (or height) of the image (hi) is given by the Magni�cation Equation to be

m =
hi
ho

= −di
do
. (2)

The quantity m, called the magni�cation, is equal to the ratio of image diameter (or image
height) to object diameter (or object height) or, alternatively, it can be expressed negative the
ratio of the image distance to the object distance.

We will make measurements to test the Lens Equation and the Magni�cation Equation for a
spherical converging lens.

Figure 2: Source distance do, image distance di, source height ho, and image height hi for a
converging lens.

Note: While the geometrical ray picture can account for the image-forming properties of lens systems,

the ray picture cannot explain other interesting optical phenomena, such as interference and di�raction of

light. An explanation of these phenomena requires explicit consideration of the wave properties of light.

We will investigate some of these properties in next week's lab.

A diverging lens is a curved piece of glass (often with spherical surfaces) which is thinner
in the middle than at the edges (i.e. a concave lens). If parallel rays of light are incident from the
left on a diverging lens, the rays diverge apart on the right side of the lens as shown in Fig. 3.
To an observer to the right of the lens, it appears as if the light is all coming from a single point
source a distance f to the left of the lens. This image of a bright point-like object to the left of
the lens is called a virtual image, since the light rays do not actually pass through this point and
so an image can not appear on a screen.
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Figure 3: Ray Diagram illustrating the focal point of a diverging lens.

It turns out that the Lens Equation and Magni�cation Equations both hold for diverging lenses
as well as converging lens if certain sign conventions are used.

� The focal length for a converging lens is positive (f > 0)

� A diverging lens has a negative focal length (f < 0)

� The image distance di is positive (di > 0) if the image is on the opposite side of the lens as
the source

� Otherwise, di < 0 (image on the same side of lens as the source)

� The source distance is always positive (do > 0) for a single lens system

2 Procedure

1. Find and record the focal length f of your converging lens by imaging light from objects
outside the window (i.e. a light source from very far away) onto a screen. Rays of light from
beyond the window are nearly parallel and a focused image will be formed when the screen
is positioned a distance f from the lens. To gain a sense of the uncertainty in f , examine
the range over which you can move the lens and still conclude that your image is �focused.�
Record these results. See Question 3a.

2. Next, a series of measurements will be made to check the Lens Equation and the Magni�-
cation Equation. On your light source you will observe a disk with several aperture shapes.
Choose the L shape. Measure and record the height of the source aperture L. Position the
light source at one end of the track and position the screen 1.00 m from the source. Place
your converging lens between source and screen and, while keeping the source-screen distance
constant, �nd and record the two positions of the lens where a focused image is formed on
the screen. Also, measure and record the heights of both focused images and note the ori-
entations of the images (upright or inverted).

Now move the screen 5.0 cm closer to the source and repeat the measurements. Continue
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the process until a source-screen distance is reached at which only a single position of the
lens gives a focused image on the screen. Find this special source-screen distance as exactly
as possible and record it. What happens when the screen is moved even closer to the source?
Move the screen 5.0 cm closer to the source, and try to position the lens to form a focused
image of the source on the screen. See Questions 1, 2, 3b, and 4.

Screen Source Distance (D) do (A) di (A) hi (A) do (B) di (B) hi (B)
100 cm
95 cm

3. In this procedure, you will measure the focal length of your diverging lens. For this exper-
iment, you will need the result that two thin lenses with focal lengths f1 and f2 placed in
�close contact" function identically to a single thin lens with e�ective focal length f given
by

1

f
=

1

f1

+
1

f2

(3)

Place the source at one end of the track. Place your converging and diverging lenses as close
together as their respective mounts will allow. Experiment with di�erent source, lens, and
screen positions until you �nd one where a real image of the source appears focused on the
screen. Record di and do. (See Question 5)

4. In this procedure you will investigate the e�ects of an aperture placed between a lens and
a focused image. Insert the mount containing a disk with 6 apertures (5 circular holes of
decreasing size and a semi-circular hole) just in front of the lens (on the source side of the
lens, as near the lens as possible). Observe closely the e�ect of each aperture on the image
and record your observations. See Question 7.
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3 Questions

1. (a) As you have seen in Procedure 2, for a given source-screen separation D there are two
di�erent positions of a converging lens that result in a focused image on the screen. For
real images, it must be that D = di + do (see Fig. 2.). For a �xed D and f , show that
the Lens Equation predicts two locations at which an image can form on the screen.
Use symbols (letters), not numbers. (Hint: Put D = di + do into the Lens Equation,
and solve the resulting quadratic equation for di, showing that there are two solutions
for di.) What condition must be satis�ed in order to actually have two image locations
(i.e. when is

√
(b2 − 4ac)) real)?

(b) Looking at the same solution found above, under what conditions will you have a single
image (i.e. a single solution to the quadratic equation)? Express your answer in terms
of the source-screen separation D = D1 and the focal length f .

(c) What happens when the source-screen separation D is less than D1?

2. (a) Plot experimentally-determined di,1 vs. theoretical di,1 and experimentally-determined
di,2 vs. theoretical di,2 (two di�erent plots). The experimentally-determined values of
di,1 and di,2 were measured in Procedure 2. The theoretical values of di,1 and di,2 are
determined by your analysis for Question 1, in which you should take the measured focal
length f from Procedure 1 and the measured source-screen distance D in Procedure 2
to be exact quantities.

(b) Explain how your two plots do or do not support the validity of the Lens Equation.
In other words, if the Lens Equation were valid, what would you expect your plot to
look like? Be as precise and complete as possible (specify its predicted shape, slope,
y-intercept, anything else that may be useful).

3. (a) What is the focal length you determined in Procedure 1? Report your �nding for the
focal length in the form f ± δf with proper units and signi�cant digits.

(b) Make a plot of D vs. di do and use your plot to determine the focal length of your
lens. Report your �nding for the focal length in the form f ± δf with proper units
and signi�cant digits. Explain clearly and justify how you determined the focal length
from your plot.

(c) Do the results you found for the focal length in Procedures 1 and 2 agree? Explain.

4. (a) Plot the measured magni�cation (m = hi

ho
) vs. the theoretically-predicted magni�cation

(m = − di
do
) for the data taken in Procedure 2. Of the images formed for �xed source-

screen separation D, plot only the distance for the image formed when the lens was
nearer the source (i.e. the bigger image).

(b) Explain how your plot does or does not support the validity of the Magni�cation Equa-
tion. Be as precise and complete as possible (i.e. mention the shape, slope, and y-
intercept of the plot).

5. Use the Lens Equation, Eq. 3, and the known value of f for the converging lens to �nd the
focal length of the diverging lens. Show your calculation fully. Report your �nding for the
focal length in the form f ± δf with proper units and signi�cant digits.
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6. (a) When �nding the focal length of a converging lens in Procedure 1, you imaged the view
from the window onto a screen. Suppose that a tree 30.0 m from a lens of focal length
10.0 cm is imaged to a 12.0 cm high focused image of the tree on a screen. How tall is
the tree?

(b) Suppose the focused image of a car passing by on South Street (100 m from your lens)
crosses your 8.0 cm-wide screen in 2.0 sec. Your lens has focal length 20 cm. Making
any reasonable assumptions necessary (and explaining them!), �nd the speed of the car
in m/sec. If the car is driving eastward, in what direction does the image move?

7. Report your observations made in Procedure 4. Were the results surprising? Explain your
observations in the context of the ray model.
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PHYSICS 120 - EXPERIMENT 8

Interference and Diffraction of Light

1 Introduction

Until now, we have exclusively considered the Ray Model to describe light. The �eld of geometric
optics is based upon this model and by using it we can describe a great number of phenomena
related to re�ection and refraction. However, in an experiment performed in 1801 by Thomas
Young, some of the �rst convincing evidence for the wave nature of light was discovered. In his
experiment, he saw behavior of light that could not be explained by the ray model. In fact, this
behavior of light was recognized as a clear indication of the wave phenomena of interference and
di�raction that we have already observed in the context of water waves and sound.

We rarely notice wave e�ects related to light in our everyday experience, and this is easily explained
by considering that the dimensions of ordinary objects are much larger than the wavelength of
light and that ordinary light is neither monochromatic nor coherent. It may not be totally clear
why these facts mean together explain why we do not experience the wave-nature of light in our
every day life - but hopefully through doing this experiment you will better understand why this
is the case.

In this experiment will be using a laser as a source of coherent, monochromatic light and
considering the interaction of laser light with an object with dimensions on the order of the
optical wavelength. Because of this we will see clear manifestation of the wave phenomena of
interference and di�raction.

In the �rst experiment, we consider the interference pattern produced when light is incident
on a pair of narrow slits some distance apart. This famous two-slit experiment (known as the
Young double-slit) is shown schematically in Fig. 1. (See Giancoli 35-3 3rd ed. or 34-3 4th ed. for
details)

Laser light of wavelength λ shines on two narrow slits in an opaque screen that are separated
by a distance a. The slits now can be viewed as two sources of coherent, monochromatic light.
Coherent means that there is a de�nite phase relation between the light intensity (a sine wave)
produced by each slit � the waves are in phase. Monochromatic means that all the waves from
the source have a single wavelength (or single color).

Consider the light intensity reaching a point P on a screen a distance L from the two slits,
and let r1 be the distance from slit #1 to P and let r2 be the distance from slit #2 to P . If
the source waves from slit #1 and slit #2 are in phase and the di�erence in path lengths is
an integer number of wavelengths (i.e. r1 − r2 = nλ) the light waves from slit #1 and slit

#2 interfere constructively, so point P is bright. On the other hand, if the di�erence in path
lengths is equal to an integer plus a half number of wavelengths (i.e. r1− r2 = (n+ 1

2
)λ), then the

light waves from slit #1 and slit #2 interfere destructively. In this case, there is complete
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Figure 1: Illustration of the Young Double-Slit Experiment

destructive interference and the point P is dark.

Thinking along these lines, an interference pattern appears on the screen consisting of a series
of bright and dark fringes (with the bright fringes corresponding to constructive interference of
the light and the dark fringes corresponding to destructive interference). This pattern appearing
is an indication of the wave-like nature of light. Using some geometry, one can show that the
condition for destructive interference is given by:

a sin θ = (n+
1

2
)λ. (1)

When the angle θ is small (θ � 1 radian),

sin θ ≈ tan θ =
xn
L

(2)

where xn is the distance on the screen between the central (n = 0) maximum and the nth bright
fringe.

� We will perform the two-slit experiment to observe the fact that, indeed, light does have
wavelike properties.

� We will test Eq. (1), and in the process determine the wavelength (λ) of light from a
Helium-Neon laser.

Di�raction is a wave phenomenon in which a wave, incident on a barrier, spreads out into the
region behind the barrier (See Giancoli 36-1 3rd ed. or 35-1 4th ed. for details). The di�raction of
sound waves around corners is an example of wave di�raction. With light, di�raction manifests
itself as the spreading of light into the geometric shadow region behind an opaque object. One may
observe di�raction when coherent light is incident on a single narrow slit of width comparable to

36



the optical wavelength. For single-slit di�raction, the light intensity pattern visible on a far-away
screen looks like a series of bright and dark fringes, much like the interference pattern from the
double-slit (see Fig. 2).

Figure 2: Illustration of di�raction from a single slit.

In fact, one may think of the single slit as a row of a large number of point sources of light, and
the fringes are due to interference of light waves produced by these light sources. This reasoning
can be made quantitative, and the spacing ∆x between the successive minima is given by

b∆x = λL (3)

where b is the width of the single slit. Actually, the above equation holds for all fringes in the
di�raction pattern except for the central bright fringe, which has width 2∆x between the dark
fringes on either side. We will perform the single slit di�raction experiment to test Eq. (3),
providing another means of measuring the wavelength (λ) of our laser source.

2 Procedure

1. Turn on the laser.
Caution: Do not look directly into the laser beam or point it toward anyone else

� direct viewing of the very intense beam of light can damage your eyes!

2. Mount the slit-�lm in front of the laser. The laser-slit distance should be about 1 m (less is
ok); the laser-screen distance should be at least 2 m (more is better). The laser should be
pointed with its beam nearly perpendicular to the wall. Tape a piece of white paper to the
wall to serve as your observation screen. Carefully measure the distance L from the slit-�lm
to the observation screen.
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3. Double-Slit Experiment: Adjust the slit-�lm position so that the beam is centered on
the narrowest of the 4 sets of double slits. Then adjust the slit-�lm so that the beam
re�ected back from the glass (called the retrore�ected beam) goes back to the laser, insofar
as possible. This procedure ensures that the beam is normally (perpendicularly) incident on
the slit-�lm. Re-check that the beam is centered on the slits. Then measure and record the
distance between successive fringes in the interference pattern. Include in your report

an image of each interference pattern with a ruler next to it. Hint: Your results
will be more accurate if you measure the length of n successive fringes, and then divide by n

4. Repeat the procedure for the other double-slits. The slit spacing is given in the table below.

Slit-�lm Data

Double Slits Single Slits
Spacing a (cm) Width b (cm)

0.01756 0.01178
0.03388 0.02044
0.0690 0.03499
0.1380 0.07428

0.1441

5. Di�raction Experiment: Now adjust the slit-�lm to observe the single-slit di�raction
patterns. Measure the spacing between successive dark fringes as before. Again, it is best
to measure the length of n fringes and divide by n. Be careful to count the central bright
fringe as a double fringe, since the distance between the dark fringes on either side of it is
2∆x. Repeat for all 5 of the single slits.

6. Di�raction Grating Experiment: (Optional laser fun!) If time remains, try putting the
beam through some of the other patterns on the slit-�lm. The di�raction gratings (n-slit
interference patterns) are particularly interesting. Also, take another look at the widest of
the 2-slit interference patterns. It looks like some of the bright fringes are missing. Why is
this? (Hint: Consider both di�raction from each individual slit and interference between
slits.)

7. Turn the laser o�.
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3 Questions

1. Using Equations 1 and 2, derive an expression for ∆x, the distance between two successive
bright fringes (e.g. the nth and (n+ 1)th bright fringes) in the two-slit interference pattern.
Express ∆x in terms of the slit spacing (a), the slits-to-viewing screen distance (L), and the
wavelength (λ). Use letters, not numbers. Show that ∆x does not depend on n.

2. (a) Using the double-slit data and the relation you derived in Question 1, make a plot to
determine the wavelength (λ) of the He-Ne laser. Explain clearly how you determined
λ from your plot. Be sure to determine and state the uncertainty in your value of λ.
Report your �nding for the wavelength in the form value ± uncertainty with proper
units and signi�cant digits.

(b) The actual wavelength of a He-Ne laser is 0.6328 × 10−4 cm. Does your experimental
value agree with the stated value? Explain.

3. (a) Using the single slit data and taking note of Eq. (3), make a plot from which you can
�nd the wavelength (λ) of the He-Ne laser. Explain clearly how you determined λ from
your plot. Be sure to determine and state the uncertainty in your value of λ. Report
your �nding for the wavelength in the form value± uncertainty with proper units and
signi�cant digits.

(b) Does your experimental value agree with the stated value? Explain.

4. Without referring to any equations, explain why the fringe separation increases as the viewing
screen is moved farther from the slits in the two-slit experiment. You may use pictures to
help illustrate your explanation.
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