2019 Physics Prize Problem Teeter-totter

A teeter-totter consists of a thin uniform beam of length 4*R* balanced atop a hemisphere of radius *R* that is fixed in position, in a uniform gravitational field *g*. Show that the oscillations of the beam about its equilibrium position are approximately simple harmonic for small oscillations, and find the period (in units of $\sqrt{R/g}$). Then find the period of oscillations having an amplitude of 30°, measured between the beam and the horizontal, as accurately as possible. Assume that the hemisphere is sufficiently rough that the beam rolls on it without slipping.

The Porter Prize and Andreas Prize

The Porter Prize was established by Carroll Porter '32, and the Andreas Prize was established in memory of Edgar L Andreas '69. Combined income from these two endowed prize funds is awarded annually to the student who submits the best solution to a complex physical problem by the use of iterative techniques. Any student at Knox may enter. Solutions should be turned in to Prof. Tom Moses, D116 SMC by 4 p.m. on **April 29**. Your submission should include a description of the method of solution, a documented listing of any computer code you develop for the solution, and any relevant computer printouts or plots.