Physics 312 - Classical Mechanics - Homework 5

1. The structure shown above is made of wires soldered together, and it is placed on a flat tabletop and confined to move in a plane. The structure consists of a circle of radius R, a rod of length $2 R$ passing through the midpoint of a radius, and a rod of length d. All wires have uniform density m / R.
a. Find the position of the CM (center of mass) measured from the bottom. Express your answer in the form of $R f(x)$ where $x=d / R$.
b. Find the gravitational potential energy as a function of angle θ if the structure is tipped by θ.
c. Find the condition on d / R needed for the structure to be in a stable equilibrium in the vertical position as it is shown in the picture.
2. A bead of mass m is free to slide along a frictionless wire bent in the curve $y=\frac{1}{a^{2}} x^{3}$ where a is a positive constant. The bead starts from rest at $x=a$ and slides under the influence of a constant gravitational field g pointing in the negative y direction. Find the time required for the bead to reach the origin. Express your answer in terms of the constants a and g.

Hint: Use the energy method. You may use Mathematica to numerically evaluate the integral you obtain (after making it dimensionless).
3. A particle of mass m is constrained to move without friction along the x-axis, subject to a potential energy given by $U(x)=U_{0}\left(\frac{1}{\sqrt{1-x^{2} / b^{2}}}-1\right)$ where U_{0} and b are positive constants. Show that for small oscillations about $x=0$, the particle undergoes simple harmonic motion. What condition on x is required for the oscillations to be "small" (i.e. simple harmonic)? Find the period T of the oscillations.
4. A simple harmonic oscillator is started with initial conditions $x(0)=x_{0}$ and $\dot{x}(0)=$ v_{0}.
a. Find the solution in the form $x(t)=A \cos (\omega t+\phi)$. That is, find A and ϕ in terms of x_{0} and v_{0}.
b. Find the solution in the form $x(t)=B \cos (\omega t)+C \sin (\omega t)$. That is, find B and C in terms of x_{0} and v_{0}.
5. Taylor Problem 5.11. Hint: The energy conservation equation relates the x and v variables.

