Classical Mechanics - Physics 312 - Homework 8

1. Find the function $y(x)$ that minimizes the integral $\int x \sqrt{1-y^{\prime 2}} d x$. Your answer will contain two arbitrary constants.
Hint: The following result may be helpful: $\frac{d}{d x} \sinh ^{-1} x=\frac{1}{\sqrt{1+x^{2}}}$.
2. Taylor 6.20. Be sure to add a few words of explanation to your calculation.
3. Taylor 6.22.

Hint: You can evaluate the arbitrary integration constants by using the boundary conditions that $y=0$ when $s=0$ and when $s=\ell$. To show that the curve is a semicircle, it is easiest to express the equation of the semicircle in $x-y$ coordinates and check if $x(s)$ and $y(s)$ satisfy it. You'll need to find $x(s)$, which you can do using the relation $d s^{2}=d x^{2}+d y^{2}$ once you have found $y(s)$.
4. Using Fermat's principle, find the path followed by a light ray if the index of refraction is proportional to \sqrt{y}. Solve for $y(x)$ (there will be two undetermined constants of integration) and describe the curve (i.e. it has a name).
Hint: The integrand has no explicit x dependence, so the result of Problem 3 will be helpful.
5. Taylor 6.24.

Hint: You should obtain a relation of the form $r=c \sin \left(\phi-\phi_{0}\right)$ where c and ϕ_{0} are constants obtained in the integration. It is convenient to note that one may take $\phi_{0}=0$ without loss of generality, since this merely amounts to choosing the direction of the x axis. Then one can multiply the relation $r=c \sin \phi$ by r, express in $x-y$ coordinates, and complete the square to obtain the desired equation of a circle.

