Physics 312 – Classical Mechanics – Homework #1

1. For what value or values of q is the vector $\vec{A} = q \hat{x} + 3 \hat{y} + \hat{z}$ perpendicular to the vector $\vec{B} = q \hat{x} - q \hat{y} + 2 \hat{z}$?

2. a. If an object's position is given by $\vec{r}(t) = 5\cos(\pi t^2)\hat{x} + t^3\hat{y}$, find the speed of the object at t = 1 sec.

b. Is the object speeding up or slowing down at t = 1 sec?

3. a. Prove that $\vec{v} \cdot \vec{a} = v \dot{v}$.

b. Explain why the above means that if a particle's speed is constant, its velocity and acceleration vector are perpendicular.

Hint: Differentiate both sides of the equation $\vec{v} \cdot \vec{v} = v^2$. Note that \dot{v} is not the same as $|\vec{a}|$; \dot{v} is the magnitude of the acceleration of the particle along its instantaneous direction of motion.

4. a. A buzzing fly moves in a helical path given by the equation

$$\vec{r}(t) = b \sin \omega t \ \hat{x} + b \cos \omega t \ \hat{y} + c \ t^2 \ \hat{z}.$$

Show that the magnitude of the acceleration of the fly is constant, provided b, ω , and c are constant.

b. Repeat the above question using cylindrical coordinates where r = b, $\phi = \omega t$, and $z = c t^2$.

1.18** The three vectors **a**, **b**, **c** are the three sides of the triangle ABC with angles α , β , γ as shown in Figure 1.15. (a) Prove that the area of the triangle is given by any one of these three expressions:

area =
$$\frac{1}{2}$$
| $\mathbf{a} \times \mathbf{b}$ | = $\frac{1}{2}$ | $\mathbf{b} \times \mathbf{c}$ | = $\frac{1}{2}$ | $\mathbf{c} \times \mathbf{a}$ |.

(b) Use the equality of these three expressions to prove the so-called law of sines, that

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

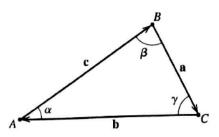


Figure 1.15 Triangle for Problem 1.18.

1.22 ** The two vectors **a** and **b** lie in the xy plane and make angles α and β with the x axis. (a) By evaluating **a** · **b** in two ways [namely using (1.6) and (1.7)] prove the well-known trig identity

 $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta.$

(b) By similarly evaluating $\mathbf{a} \times \mathbf{b}$ prove that

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.$$