Physics 312 - Classical Mechanics - Homework \#1

1. For what value or values of q is the vector $\vec{A}=q \hat{x}+3 \hat{y}+\hat{z}$ perpendicular to the vector $\vec{B}=q \hat{x}-q \hat{y}+2 \hat{z}$?
2. a. If an object's position is given by $\vec{r}(t)=5 \cos \left(\pi t^{2}\right) \hat{x}+t^{3} \hat{y}$, find the speed of the object at $t=1 \mathrm{sec}$.
b. Is the object speeding up or slowing down at $t=1 \mathrm{sec}$?
3. a. Prove that $\vec{v} \cdot \vec{a}=v \dot{v}$.
b. Explain why the above means that if a particle's speed is constant, its velocity and acceleration vector are perpendicular.
Hint: Differentiate both sides of the equation $\vec{v} \cdot \vec{v}=v^{2}$. Note that \dot{v} is not the same as $|\vec{a}| ; \dot{v}$ is the magnitude of the acceleration of the particle along its instantaneous direction of motion.
4. a. A buzzing fly moves in a helical path given by the equation

$$
\vec{r}(t)=b \sin \omega t \hat{x}+b \cos \omega t \hat{y}+c t^{2} \hat{z}
$$

Show that the magnitude of the acceleration of the fly is constant, provided b, ω, and c are constant.
b. Repeat the above question using cylindrical coordinates where $r=b, \phi=\omega t$, and $z=c t^{2}$.
1.18 ** The three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are the three sides of the triangle $A B C$ with angles α, β, γ as shown in Figure 1.15. (a) Prove that the area of the triangle is given by any one of these three expressions:

$$
\text { area }=\frac{1}{2}|\mathbf{a} \times \mathbf{b}|=\frac{1}{2}|\mathbf{b} \times \mathbf{c}|=\frac{1}{2}|\mathbf{c} \times \mathbf{a}| .
$$

(b) Use the equality of these three expressions to prove the so-called law of sines, that

$$
\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma} .
$$

Figure 1.15 Triangle for Problem 1.18.
1.22 ** The two vectors \mathbf{a} and \mathbf{b} lie in the $x y$ plane and make angles α and β with the x axis. (a) By evaluating $\mathbf{a} \cdot \mathbf{b}$ in two ways [namely using (1.6) and (1.7)] prove the well-known trig identity

$$
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
$$

(b) By similarly evaluating $\mathbf{a} \times \mathbf{b}$ prove that

$$
\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
$$

