## Physics 312 - Classical Mechanics - Homework \#2

1. The velocity of a particle in rectilinear motion varies with displacement $x$ according to the relation

$$
\dot{x}=b x^{-3},
$$

where b is a positive constant. Find the force acting on the particle as a function of $x$. (Hint: $=m \ddot{x}=m \dot{x} \frac{d \dot{x}}{d x}$ )
2. Find the velocity and position as functions of time for a particle of mass $m$ subject to the force given below and starting with the given initial conditions. from rest at $x=0$ and $t=0$, subject to the force given by:
a. $F_{x}=F_{0}+c t$, starts from rest at $x=0$ and $t=0$.
b. $F_{x}=c x^{-1 / 2}$, starts from rest at $x=0$ at $t=0$, where $F_{0}, c$, and $a$ are constant.
3. A heavy block of mass $m$ slides on a horizontal surface coated with oil so that the block experiences a viscous drag force given by

$$
F(v)=-c v^{3 / 2}
$$

If the initial speed of the block is $v_{0}$ at $x=0$, show that the maximum distance the block can travel is $2 m v_{0}^{1 / 2} / c$.
4. A pistol is fired either straight upward or straight downward from the origin at $t=0$. Assuming that the air drag on the bullet varies quadratically with speed, show that the speed varies with height according to the relations
$v^{2}=A e^{-2 k x}-\frac{g}{k}$ (upward motion)
$v^{2}=\frac{g}{k}-B e^{2 k x}$ (downward motion)
where $k=c / m$, where $c$ is the drag constant, $g$ is the acceleration due to gravity, and $A$ and $B$ are constants. Derive expressions for $A$ and $B$ in terms of the given constants and the initial velocity $v_{0}$ is the initial velocity of the bullet.
5. A bead of mass $m$ is free to slide on a frictionless wire bent in the shape of a cosine curve $y=a \cos \left(\frac{x}{b}\right)$, where $a$ and $b$ are constant. Gravity points in the negative $y$ direction. Suppose the bead starts at rest at the top of a peak.
a. Find the radius of curvature of the point at the bottom of a trough.
b. Find the tangential and normal components of the acceleration of the bead at the bottom of a trough.
c. Find the constraint force (normal force) vector exerted by the wire on the bead at the bottom of a trough.

