
A Brief Introduction to Error Analysis

Errors and Uncertainties

Suppose the theory you are testing predicts a value of 2.0 for a particular quantity, but your experimental
value is 1.5. Is your experimental value consistent with the theory or not?

This sort of situation arises all the time with experiments: the measured number is not exactly identi-
cal with the predicted theoretical value. To draw any conclusion from the experiment, it’s necessary to know
what the precision of the measured number is. For example, if the measured number and its uncertainty
are 1.5 ± 0.5, the measurement is consistent with the theoretical prediction of 2.0; however, if the measured
number were 1.5 ± 0.1, it is not. Knowing the uncertainty in your measured number is an essential part of
the experiment. The uncertainty number (the ± 0.1) is customarily called the “experimental error” although
the term is somewhat misleading - no sort of error has necessarily been made by anyone - uncertainties are
inherent in the measuring process due to the limitations of the instruments used and sometimes due to the
statistical uncertainty inherent in the natural phenomenon itself.

Types of Errors

It is important to realize that uncertainties can get into an experiment in a surprising number of differ-
ent ways, and often just identifying the major source of uncertainty can be a challenge. The most obvious
way uncertainties enter is through the limitations of the measuring instruments; for example, the smallest
markings on the ruler are millimeters, so the uncertainty of a ruler measurement must be at least a mil-
limeter. However, the uncertainty of a ruler measurement could easily be much more than a millimeter.
Suppose you are measuring the focal length of a lens by focusing light from a distant source on a screen and
measuring the lens-to-screen distance with a ruler. Different distances (maybe differing by a few mm) might
look equally in focus to you, so the uncertainty in this case is a few mm. This is a problem of definition
– the visual determination of “in focus” has uncertainty.

As another example, you might try measuring the length of a tabletop and find that you get slightly different
measurements depending on what part of the table you measure – because its sides are not quite smooth or
perhaps imperfectly parallel. Here again the uncertainty could be larger than the uncertainty coming from
the ruler’s markings. This uncertainty is due to model error : the model of the tabletop as rectangle is not
exact.

Sometimes the way a measuring device is read contributes an error: if you are constrained to view the
ruler from an angle rather than perpendicularly, the geometry of the viewing can result in parallax error.

Another possibility is that the ruler was manufactured poorly, with the markings 1% too close together
– then all measurements made with this ruler will be low by 1%. This non-random error due to miscali-
brated equipment, which is always present to some degree, is called systematic error. It can be difficult
to estimate the size of systematic errors: sometimes the equipment manufacturer specifies a probable or
guaranteed maximum degree of systematic uncertainty in an equipment manual, sometimes an experimenter
must undertake a separate calibration experiment to test the measuring instrument against a known standard
(which itself has a specified maximum uncertainty, hopefully small).

Some uncertainties are actually random, and then the degree of uncertainty can be measured accurately
by repeating the experiment many times – the degree of scatter among the measured values (i.e. standard
deviation) can usually be taken as the measure of the uncertainty. In practice, however, uncertainties usually
result from many sources – systematics, random uncertainties, and various model errors – and it is not always
easy to figure out what source of uncertainty is dominant and which can be safely ignored.
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As a last word on experimental error, it is important to understand that “human error” is not a legiti-
mate type of experimental error. In other words, if you did a procedure wrong or wrote down a wrong
number, this does not count as “experimental error” – it is simply a mistake. Note that the lab can
be made available day and night, so if you should discover a mistake, you are encouraged to return and redo
a procedure or an experiment.

Estimating Uncertainties

As the above discussion indicates, figuring out the size of an experimental uncertainty can be tricky. Fortu-
nately, we usually only require an estimate, and this is usually not too difficult. For ruler and other scale
reading measurements, ± half the smallest scale division is a reasonable estimate for the uncertainty (but
be alert for situations where the actual uncertainty is larger, as in the examples above). This rough esti-
mate will handle ruler and balance measurements. For timing measurements (including velocity), it is often
convenient to repeat the measurement a few times - the maximum deviation from average gives a rough,
order-of-magnitude measure of the uncertainty.

Propagating Uncertainties

Once you know the uncertainties in the raw measured quantities in an experiment, you may still need
to know the uncertainty in some other value calculated from the raw quantities. For example, after you
measure the mass m ± ∆m and the volume V ± ∆V of an object, you might want to know the mass density
and its uncertainty. Of course, the mass density ρ is given by ρ = m

V – but what is its uncertainty? This is
the problem of propagation of uncertainties – figuring how uncertainties are affected when they propagate
through a calculation or a series of calculations. There are well-established statistical rules for how to figure
this out – but the rules are a little complicated and actually only rigorously valid for random uncertainties
following the normal, or bell-curve, frequency distribution (although the method is approximately valid gen-
erally, and in practice used almost universally). We present instead a simpler approach for estimating the
uncertainties in this course (which are usually dominated by systematic rather than random uncertainties):
the uncertainty ∆ρ in the density is given by ∆ρ = 1

2 (ρmax − ρmin), where ρmax is the maximum density
consistent with the data and ρmin is the minimum density. Hence we have ρmax = m+∆m

V−∆V and ρmin = m−∆m
V+∆V .

Take a close look at the plus and minus signs in these relations and note that ρmax is not the maximum
mass over the maximum volume, but rather the maximum mass over the minimum volume.

The above approach to propagating uncertainties gives a worst-case estimate: the density reaches its limiting
value ρ ± ∆ρ only when both mass and volume are at the (appropriate) ends of their respective ranges. If
the uncertainties in mass and volume were random and uncorrelated, one might expect this event (both
mass and volume simultaneously at the limit of their allowed ranges) to be rather unlikely, and the above
procedure would then give an overestimate of the uncertainty. On the other hand, if the uncertainties in
mass and volume are not random but due to systematic errors, we may in fact be most interested in this
worst-case bound on the uncertainty. And as a practical matter, this estimate of the uncertainty will in most
cases be not too much larger (say, within a factor of 2) than that calculated by the statistically rigorous
approach. And in most cases, this degree of accuracy in the estimate of uncertainties is quite adequate – the
calculation of uncertainties is sometimes not a very exact science! Thus, it is always important to document
how you calculated your uncertainties.
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Uncertainty in the Slope and y-intercept of a Linear Fit
(Reference: J. Higbie, Am. J. Phys., Vol. 59, No. 2, February 1991)

Though the derivation goes beyond the scope of this class, one can calculate the uncertainty in the slope
and y-intercept from the correlation parameters given to you in your linear fit.

• The uncertainty in the slope (δm) is given by:

δm =
|m| tan(arccos(R))√

N − 2
(1)

where m is the slope, R is the square root of the R2 value from the linear fit, and N is the number of
data points in the data set. Note that there cannot be any uncertainty in the fit of you data if there
are no more than 2 data points!

• The uncertainty in the y-intercept (δb) is given by:

δb = δm · xrms (2)

where xrms is the root mean square value of the x values.

• The root mean square value of a set of x values can be found as

xrms =

√√√√ 1

N

(
N∑
i=1

x2
i

)
(3)

As you can see, it is the “root” of the “mean” of the “squares”. Note that, the further the values are
from the y-axis the larger the xrms value and consequently the larger the uncertainty in the y-intercept
for a given slope uncertainty.

Further Reading

Students interested in further reading on the subject of error analysis are directed to John Taylor’s ex-
cellent and highly accessible text An Introduction to Error Analysis.
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