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PREFACE

The goals of physics are to understand nature and make accurate predictions. Physics is often pre-
sented as if these goals are achieved by reasoning mathematically from a small set of fundamental
laws which look much like mathematical axioms. However, because of this emphasis on mathe-
matical reasoning and logical deduction, it is easy to lose sight of the crucial fact that physics,
like the other sciences, is experimental. This means that experiments are the basis for the laws
of physics and all the predictions we derive from them — the "laws" of physics are in essence just
concise summaries of experimental results.

When a theoretical prediction conflicts with an experimental finding, it is the theory which must
be scrutinized and likely discarded — so it s experiments which constrain theory. Experi-
ments sort out which theories are possible and which are not. Naturally, the real story is often
more complicated than this simple picture: there are examples of great theorists who refused to
believe in experiments that seemed to contradict their models and whose intuitions about nature
were ultimately vindicated by later, more careful or improved, experiments. There have also been
some great theorists who tried this dangerous game and lost. Notwithstanding these interesting
complexities of physics research as a human endeavor, the fundamental principle remains that
experiments are the ultimate basis of our physical knowledge.

Real experiments are a messy business though, and this part of the course is designed to teach
you about how they actually work. It is almost never easy to disentangle one single phenomenon
or principle to be tested from all the other interactions that are always present. Right away we
are forced to make approximations, to try to neglect interactions that are hopefully small (like air
resistance), and to model others that may not be small (like friction) in ways that we know are
imperfect. There is always the issue of choosing an appropriate model—a mathematical descrip-
tion of the experiment that inevitably leaves some things out. Of course, one wants to be sure
that what is left out is in fact negligible, or, more precisely, one wants to have some estimate of
the size of the errors made.

This brings us to yet another element of experimental work you will be learning about in this
course, error analysis or uncertainty analysis, which can be surprisingly intricate. While you
will be exposed to issues of experiment design and uncertainty/error analysis, our focus will be
primarily on the using the physics you are learning in your lecture section in applied hands-on
applications.

This manual begins with information about the course policies, instructions for preparing your
lab reports, and detailed disussion of the reporting of measured numbers and experimental uncer-
tainties. After this information you will find descriptions of the planned lab activities for each week.
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LABORATORY COURSE INFORMATION
Knox College Physics 110 - Fall 2025

LAB MEETINGS: Wednesdays in room SMC D105

LAB INSTRUCTOR: Tom Moses

office: SMC D116

office hours: Anytime I am in my office and free (just ask).
email: tmoses@knox.edu

office phone: 309-341-7341

LAB REPORT HONOR CODE PoOLICY:

You are encouraged to work together on lab reports; you may consult other students, tutors, or
other physics faculty members to obtain insight regarding the lab questions. However, your final
write-up must be your own unique product. In particular, duplicate reports, even from lab
partners, are not acceptable and likewise, sharing any exact text or plots from your
report is not acceptable.

You additionally are not allowed to use AI (for example, chatGPT) to seek solutions to
point bearing work (including lab reports). Doing so would be a violation of the Honor Code as
you would be presenting work that is not yours for credit.

Lab partners can share measured numbers only with their other lab partners who were personally
present when the data was acquired. If you have to miss a lab or leave early, you will need to
arrange a time to make up the lab (or the part of the lab that was missed.)

If you have any questions about issues related to the honor code, please ask.

LAB REPORT SUBMISSION:

Lab Reports are due on Friday at 4:00 PM, following the lab on Wednesday. Lab reports should be
submitted as a hardcopy submitted in the Lab box in D-wing following the formatting procedures
outlined on the following pages.

Please see the next section for instructions on preparing your lab reports.

PoLrLicy oN LATE LAB REPORTS:

Late labs will get a 10% deduction per business day (work must be turned in by 4:00 PM to be
considered in for that day). Naturally, special arrangements can be made (in advance, whenever
possible) for sports competitions, illness, etc.
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ATTENDANCE AND TARDINESS POLICY:

Instructions for the use of the lab equipment and on safety issues are presented at the beginning
of the lab period, so it is particularly important to arrive on time for lab. Tardy students will be
penalized 10% on the first occasion, and 20% for subsequent occasions. Late arrivals may need to
work alone if their lab partner(s) are already well along, at the discretion of the lab instructor.
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PREPARING LABORATORY REPORTS

Laboratory reports for this course will be rather streamlined, since we want you to focus on
understanding the physical ideas rather than on crafting polished scientific reports. That said,
reports are expected to follow the guidelines described below.

I.

II.

GENERAL INFORMATION ABOUT LAB REPORTS

Laboratory reports for this course should be submitted as a hardcopy (on paper). Your
report may be neatly handwritten, or typed (using Word or Google Docs, for example). If
a typed version is submitted, you will need to format equations and mathematical symbols
appropriately. Whether your report is handwritten or typed, plots must be prepared using
computer software (see the guidelines below) and may not be hand-drawn.

Your report should consist of the following three parts:

e Identifying information Your name, your lab section (A, B, C, D), and your lab
partners names. Write "Lab partners:" in front of your partners names so it is clear
who is the author of the report and who was a partner.

e Answers to the questions including any calculations, explanations in English, screen-
shots, or plots. Present your question answers in order. In other words, do not attach
plots or tables at the end of the report, but include them in the proper sequence with
the other questions.

e Raw data Include your raw data (the un-analyzed measured numbers acquired in the
lab) as an appendix at the end of your report. Label it clearly. Having the raw data
available is often helpful in diagnosing problems with the experiment or apparatus.

GUIDELINES FOR PRESENTING ANSWERS TO QUESTIONS

Most questions will require answers that include a numerical answer as well as an explanation
or some sort of response. Provide these explanations as clearly worded complete sentences.
When calculations are required, show them in full detail. If a number of similar
repetitive calculations are necessary, it is fine to show one example calculation.

When showing your calculations, always:

e define all symbols used
(e.g. mp = mass of ball; my = mass of glider; v, = initial speed of glider, vs = final speed of
glider, etc.),

e specify the units of all quantities including the slopes and intercepts of plotted lines,
unless they are truly unit-less

e report numerical values with an appropriate number of significant digits

e include uncertainties, with correct significant figures
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III. PREPARING AND PRESENTING PLOTS

Plots and best-fit lines must be prepared using computational tools such as
Google Sheets, Excel, Mathematica, Python, or similar. Plots made by hand are
not acceptable. If you do not yet know how to create plots using computer software and
computational tools, please ask—the lab instructor or course teaching assistants can help
you.

Guidelines for plots:

- Plots should have a title and appropriate labels on the z- and y-axes including the
units of the plotted quantities.

- If it is appropriate to apply a linear fit to your data, you should use the same applica-
tion for the fit as you use to plot your data. Do not connect the data points with line
segments and do not attempt to draw a best fit line by eye.

- Be sure the plot symbol size is appropriate (large enough to be visible and not oddly
large).

- For best-fit lines, show the line on the plot, report the numerical values of the both
the slope and intercept, and report the R? "goodness of fit" parameter.

- Plots are often considered the most important and convincing element of a scientific
report. Make sure yours are large enough to be easily readable.



REPORTING MEASURED NUMBERS

I. Significant Figures

Reporting a measured number with an appropriate number of digits is important since it implies
a certain experimental resolution. In other words, if you report a length of 1.045 mm, you are not
just asserting what the length is, but also a confidence that the true length is known to within one
thousandth of a millimeter. So, if you display too many digits, you are making a very misleading
claim about the precision of your measurement.

Deciding how many digits are appropriate to report is not always simple and can depend on
the details of your experiment. Learning to understand it completely is part of mastering your
field and the Physics & Astronomy Department covers the mathematical theory in more detail in
PHYS 241. However, the method of significant digits or significant figures is a simple approximate
method that works quite well and provides a very good introduction about how to start regularly
thinking about this issue. You likely have some familiarity with it already and below is some
discussion and examples.

A. NUMBER OF SIGNIFICANT DIGITS IN A MEASURED QUANTITY

The number of significant digits in a measured number is determined by the resolution of
the measuring equipment (i.e. how precise it is capable of measuring) and by the magnitude
of the quantity measured.

Examples:

A ruler with £ 0.1 mm precision' is used to measure a one millimeter long sample.
Tthis effectively means using this ruler you are able to measure to the closest 0.1 mm
= The result is: 1.0 + 0.1 mm. (The quantity 1.0 mm has 2 significant digits).

The same ruler is used to measure a ten-centimeter long sample.
= The result is: 100.0 + 0.1 mm. (The quantity 100.0 mm has 4 significant digits).

Vernier calipers (another type of length measuring device) with + 0.05 mm precision are
used to measure the one millimeter long sample.
= The result is: 1.00 + 0.05 mm. (The quantity 1.00 mm has 3 significant digits).

Two important notes:

e The uncertainty has only one significant digit in most cases.” This is because uncer-
tainties are not precisely known quantities by their nature - as they are an uncertainty.
*there are specific cases where a maximum of two significant digits may be appropriate

e The last significant digit of a measurement or number that is reported is in the same
place as the uncertainty (i.e. the tenths place for the first two examples).

B. PROPAGATION OF SIGNIFICANT DIGITS IN A CALCULATION

You will often need to know how to determine the number of significant digits should be
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https://www.youtube.com/watch?v=FNdkYIVJ3Vc

displayed in a number obtained from a calculation. This is related to the topic of propagating
uncertainty, covered in the next section. In essence, the propagation rules for significant
digits described below are a simplified rough approximation to a more careful and exact
method of propagating uncertainties described later. Because the rules for significant digits
are simple to use and give an estimate of how uncertainties propagate, they are worth learning
and should always be used unless the more exact method of propagation of uncertainties is
used instead.

1. Adding/Subtracting

The number of significant digits in the result is determined by the place of the last digit
from operand with the smallest number of significant digits after the decimal point.
(Notice you need to make sure to also properly round your final result.)

Examples:

2.005
0.04
+13.2415
15.29

1.954
-0.43
1.52
2. Multiplying/Dividing or Other Operations (exponentiating, logs, etc.)
The number of significant digits in the result is the same as that of the operand with
the smallest number of significant digits.

Examples:

2.005 x 1.04 x (3.2 X 102) = 6.7 x 10?
(Note: Writing the above result as 670 is ok, but it is somewhat ambiguous whether or not the

zero is significant. The use of scientific notation avoids this ambiguity).
sin(1.27) = —0.59
3. Extra Digits to Avoid Round-Off Error

You may, and should, use one or two extra digits in intermediate steps to avoid error
due to repeated round-offs. (Note: you only need one or two extra digits; using all the
digits displayed by the calculator is always a waste of time.) These extra digits should
be used in calculations only. Whenever you provide final results or answers to questions
the reported numerical values must have an appropriate number of significant digits.

II. Units

Measured values you report usually will have units, and the units must be included along with
your measured value. Note that some quantities you are familiar with from other contexts (like
the slope and y-intercept of a line) typically have units which must be reported in the usual manner.
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In this course we will use the standard mks (meters, kilograms, seconds) system — this is a
description of a specific standard within the metric system. A few examples of some important

units
[ ]
[ J
[ J
[ J

I1T.

A.

to make sure you know how to use properly are listed below:
Base Units: meters, kilograms, seconds

m/s — unit of velocity

m/s? — unit of acceleration

Newton = kgm/s? — unit of force

Joule = Nm = kgm?/s? — unit of energy

Uncertainty

"ERRORS" AND UNCERTAINTIES

Suppose the theory you are testing predicts a value of 2.0 mm for a particular quantity, but
your experimental value is 1.5 mm.

Is your experimental value consistent with the theory or not?

This type of situation arises all the time with experiments, where the measured number is
not exactly identical with the predicted theoretical value. Therefore, to draw any conclusion
from the experiment, it is also necessary to know the precision of the measured number. For
example, if the measured number and its uncertainty are 1.5 + 0.5 mm, the measurement
s consistent with the theoretical prediction of 2.0 mm; however, if the measured number
were 1.5 £ 0.1 mm, it s not. Knowing the uncertainty in your measured number, then, is
an essential part of the experiment without which its meaning is unclear. The uncertainty
number (the £0.1 mm) is customarily called ezperimental error or sometimes experimental
uncertainty, which is a better term since no sort of "error" has been made by anyone —
uncertainties are inherent in the measuring process. This can be due to the limitations of
the instruments used (note that any instrument will have some uncertainty) or even the
statistical uncertainty inherent in the natural phenomenon being measured.

. TYPES OF ERRORS

It is important to recognize that uncertainties can show up in an experiment in a surprising
number of different ways, and often identifying the major source of uncertainty can be a
challenge in itself. An important first step in understanding uncertainty is identifying some
of the types of uncertainties/errors to look out for.

The most obvious way uncertainties enter is through the limitations of the measur-
ing instruments. For example, if the smallest markings on the ruler are millimeters, the
uncertainty of a ruler measurement must be at least a half-millimeter or so. This will impact
how many significant figures you use, as discussed previously. However, the uncertainty
of a ruler measurement could easily be more than a half-millimeter due to additional sources
of uncertainty in your measurement.
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Beginning to familiarize yourself with the proper vocabulary of scientific uncertainty is im-
portant. This will take some time if it is new to you, but this class is a great way to start.
Below are some examples of several different types of uncertainty involving measurement
with a ruler, other than the resolution of the ruler markings.

i. Consider measuring the focal length of a lens by focusing light from on a screen and
measuring the lens-to-screen distance with the ruler. Different distances, maybe differ-
ing by a few mm, might look equally in focus to you, so this introduces an uncertainty
of a few millimeters. This uncertainty is a problem of definition as the visual deter-
mination of "in focus" has a some range in the definition.

ii. As another example, you measure the width of a tabletop with the ruler and find that
you get slightly different measurements depending on which exact part of the table you
measure. This is because the table’s sides are not quite perfectly smooth and perhaps
the table’s edges are not perfectly parallel. Therefore, this uncertainty is due to model
error as we model the tabletop as a perfect rectangle which is non-exact, causing un-
certainty when a real table is measured. Note that this uncertainty could, again, be
significantly larger than the uncertainty coming from the ruler’s markings.

iii. The way a measuring device, such as a ruler, is read can contribute to error. If you are
constrained to view the ruler from an angle rather than perpendicularly, the geometry
of the viewing can result in parallaxz error. In this case, the thicker the ruler and the
more oblique your viewing angle, the larger the error will be.

iv. The ruler may have also been manufactured incorrectly, with the markings 1% too close
together — then all measurements made with this ruler will be large by 1%. This non-
random error’ is called systematic error. Indeed, there are no perfect rulers, so one
can say with confidence that every ruler has some degree of systematic error (hopefully
much less than 1%, and in fact if it is much less than the millimeter markings, it may in
fact be negligible in practice.) Systematic error can be particularly difficult to estimate
as it typically requires a careful calibration experiment with improved equipment or
techniques. Sometimes equipment manufacturers may specify a probable or guaranteed
mazrimum systematic error in an equipment manual; other times an experimenter must
undertake a separate calibration experiment to test against a known standard. It is im-
portant to note that since systematic error is not random, it is typically more difficult
to overcome than random statistical errors, which can be reduced by collecting many
data values and averaging.

C. QUANTIFYING RANDOM ERROR/UNCERTAINTY

Random errors, unlike systematic errors (discussed in the last example above), can be
determined by repeating an experiment many times. The degree of scatter among the mea-
sured values, described by a quantity called the standard deviation, can usually be taken
as the measure of the random error.

D. WHICH TYPE OF ERROR DO You HAVE?
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When performing real experiments there are many sources of error — some may be systematic
in nature and others random, as well as some that don’t clearly fall into either category (such
as model errors). When asked to identify and consider your sources of error it is important to
realize that many potential sources of error may not be significant—the uncertainty in most
experiments is dominated by a single largest source of uncertainty. If asked about possible
sources of uncertainty, do your best to think quantitatively and to consider the relative size
of your errors in order to identify which is (or are) the most important to include in your
error analysis.

As a last word on types of experimental error: You may be tempted to attribute some of the
uncertainty in your experiment to "human error”, nevertheless this is not an legitimate type
of experimental error. Tempting as it may be to reason that since humans are imperfect
creatures, our measurements must also bear this limitation, this is not at all what the term
"experimental error" means. Making a mistake like writing down the wrong number in your
notebook does not count as an experimental error or a source of uncertainty. When you
identify a mistake you should, of course, attempt to fix it. If you believe you have made
a mistake but cannot identify what exactly it is, do not report this as experimental error,
but rather add a comment explaining the situation. Long story short, please do not use the
term "human error" in your lab report.

. ESTIMATING THE SIZE OF UNCERTAINTIES

Knowing the exact size of an uncertainty can be tricky. Fortunately, we usually only require
an estimate and this is usually not too difficult.

e For scale reading measurements (like rulers), & half the smallest scale division is often
a reasonable estimate for the minimum uncertainty.

e For timing measurements (including velocity or acceleration), it is often convenient to
repeat the measurement a few times - the maximum deviation from average (i.e. half of
the range) gives a rough, order-of-magnitude estimate of the uncertainty. If you take a
large number of measurements the standard deviation for the set can be used.

e For other measurements, (for example the uncertainty on a standard mass) you should
choose a reasonable uncertainty that you feel you can justify or ask your lab instructor
for more information.

. PROPAGATING UNCERTAINTIES IN A CALCULATION

Once you know the uncertainties in the raw measured quantities in an experiment, you may
still need to know the uncertainty in some other value calculated from the raw quantities.
For example:

You measure the mass (m £ Am) and the volume (V' £ AV') of an object; you want
to know the mass-density (p) and its uncertainty (+Ap).

The mass density is given by p = 7. What is its uncertainty?

This is the problem of propagation of uncertainties — figuring how uncertainties are
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affected when they propagate through a calculation or a series of calculations. There are
well-established statistical rules for this but they are only rigorously valid for random un-
certainties following the normal, or bell-curve, distribution (although the method generally
is approzimately valid). If you are interested, PHYS 241 (Introduction to Research) or
STAT courses are a great way to gain a deeper understanding of how and why this is true!
Here, we’ll present a simpler approach for estimating the final uncertainties that requires no
mathematics knowledge beyond what is needed for the course.

The final uncertainty in the density (Ap) is given by Ap = %(pmax — Pmin), Where ppay is
the maximum value for the density consistent with the data and p,;, is the minimum
value for the density.

_ m+Am

m—Am
Pmax = VAV VFAV

V4+AV®

and Pmin =

Now, take a close look at the + and - signs in the relations above and note that ppax
is not the maximum mass over the maximum volume, but rather the maximum mass
over the minimum volume. Take a moment to make sure you understand why!

This approach will give a worst-case estimate: the density reaches its limiting value p + Ap
only when both the mass and volume are at the appropriate ends of their respective ranges.
If the uncertainties in mass and volume were random and uncorrelated, one might expect
this to be rather unlikely, and the above procedure would then give an overestimate of the
uncertainty. On the other hand, if the uncertainties in mass and volume are systematic
errors, this worst-case scenario may be most appropriate.

The estimate provided by the method outlined here may be a bit too large but will nearly
always will be within a factor of 2 of that calculated by the statistically rigorous approach.
So, in most cases this degree of accuracy for our uncertainties will be adequate — clearly, the
calculation of uncertainties is sometimes not a very exact science and it is always important
to document how you calculate your uncertainties, not just your final result.
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G. UNCERTAINTY IN THE SLOPE AND Y-INTERCEPT OF A LINEAR FIT
(Reference: J. Higbie, Am. J. Phys., Vol. 59, No. 2, February 1991)

You will frequently need to calculate results using the slope or y-intercept from a line that
you fit through your data. Though the derivation goes beyond the scope of this class, it is
easy to calculate the uncertainty in the slope and y-intercept from the standard parameters
that are supplied to you with your linear fit when using a program such as Fzcel.

e The uncertainty in the slope (dm) is given by:

_|m|tan (arccos(R) )
- N -2

om

(1)

where m is the slope, R is the square root of the R? value (i.e. correlation coefficient)
from the linear fit, and NV is the number of data points in the data set that was plotted.

e The uncertainty in the y-intercept (0b) is given by:

where x5 is the root mean square value of the x values (see below).

e The root mean square value of a set of x values can be found as

Trms =

A difficulty sometimes occurs when using standard software like Excel or Google Sheets to
display the linear fit (trendline) equation and correlation coefficient. Sometimes, especially
when the R? value is very close to unity, the above-described method becomes inaccurate,
or worse, the software rounds the value of R? to 1 and the above formula cannot be used
(it results in an uncertainty of zero, which is incorrect.) In that case, you will need to
find the values of R? (and sometimes the slope or y-intercept) to greater precision than
Excel provides by default—that is, you need the software to supply more significant digits
instead of automatically rounding. In Excel or Google Sheets, you can use the function "=
correl(A1:A10, B1:B10)" typed in any vacant cell (with quote marks omitted) to evaluate the
R-value of your data to any desired degree of precision. Here the descriptors A1:A10, B1:B10
indicate the range of the spreadsheet where the data is located (you will have to adjust for
the location of your own data). You can use the Format (Cell) command to increase the
number of significant digits displayed. Please ask your lab instructor if you need help with
this pesky, and not so-very-rare, issue.

Further Reading

Students interested in further reading on the subject of error analysis are directed to John
Taylor’s excellent and highly accessible text An Introduction to Error Analysis.
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PHYSICS 110 - EXPERIMENT 1
INVESTIGATING MOTION AND USING IOLABS

1 Introduction

In this lab, you will be exposed to many of the physics concepts and experimental techniques that
will be revisited throughout the term in lab. This week, you will be introduced to tools we will be
using this term: the ¢OLab device and accompanying software, and the process of plotting data
using Google Sheets, Fxcel or other computer plotting software.

For many of you, this experiment introduces new software to learn as well as many new ideas.
Recognize it is OK if you do not master it all on this first exercise, but you must focus energy
on building these skills as you will need them throughout the term. In addition to building skills
with the software and hardware, this lab will also reinforce what you are learning in class about
displacement, velocity, and acceleration. A good scientist needs to understand their tools as well
as the theory behind experiments in order to be successful in the laboratory. Even if some of these
steps seem simple, please take the time to do them carefully as there are many subtle details to
learn.

2 Procedure

A. Exploring Position, Velocity, and Acceleration using the iOLab (Wheel)
(i) Log in to a lab computer and launch the iOLab App.
(ii) Turn on the iOLab the device then initiate the Wheel sensor.

(iii) Place the iOLab device on a relatively smooth surface face-down (i.e. on its wheels).
Press the Record button ©f<d in the iOLab App then begin to roll the iOLab device
across the surface watching how the device records the one-dimensional position from
the starting position as well as velocity and acceleration.

(iv) Note the that zero-point of position can be reset while you are running the experiment
by pushing the Rezero sensor button.

(v) By default the experiment is set to run indefinitely, however you should click the Stop
button 5P when you are not taking data. You may simply click Continue when you
wish to start taking data again.

(vi) At any time if you wish to start over you may click the Reset button “fet CAUTION:
this will erase the data you just took from the screen. However, your data runs are
automatically saved and can again be found using the Local resources function ™
but may be a little tricky to retrieve. If you want to find the saved data, your data file
is saved to the folder Documents/IOLab-workfiles /rawdata and the filename indicates
the data and time.



(vii) You also may save your current data and start a new data-collection run by clicking
on the Add run button A%

(viii) Try several simple practice experiments such as rolling the cart up an incline, along a
flat surface, etc. . Take time to adjust how your data are displayed (e.g., zooming in to
a region, adjust the range, taking average over a region, etc.). You will need to display
your data in a multitude of ways during the term.

B. Experiments

1. Push the cart with a roughly constant velocity along a smooth surface. This can be a
part of a longer run, but you will need to change the range such that the region with
constant velocity is clearly visible.

Using the measurement tools in the {OLab Application determine the velocity you
pushed the cart with using the position graph. Assume an uncertainty of 5% on
your velocity derived through this method. Take and save a screenshot showing
your measurement.

Using the same section of data, now look at the velocity graph. Again using the
measurement tools determine the velocity (given by g in the iOlabs graphs) and
appropriate uncertainty (given by o). Take and save a screenshot showing your
measurement. In Windows, a convenient tool for taking a screenshot of part of the
screen is SnippingTool.

Again using the same section of data, now look at the acceleration graph. De-
termine the value and uncertainty of the acceleration from the plot (same method
as above) and save a screenshot.

Use these data to answer Question 1 (include the screenshots with your answer)

2. Place the cart at the top of a notable downward incline with the y-axis of the 1OLab
cart pointed down the incline and release it from rest (take care not to let the device
fall off a tall ledge or similar; it can break!).

To begin, look at the velocity graph and highlight the portion where the cart was
rolling down the incline. This should be easy to identify if you consider what should
be occurring as the cart rolls down the incline.

Can you determine the velocity of the cart using the same methods you used in the
previous experiment? Why or why not?

Take a screenshot to support your answer.

Answer Question 2.

3. Repeat the procedure from Experiment 2 of having the cart roll down a smooth incline
in the positive y-direction, now from two different starting heights (so you will have



data from three different heights altogether.)

Determine the mazimum speed of the cart for each starting height, which should be
when the cart reaches the bottom of the incline. Make sure to also record each
starting height, i.e., the distance between where the cart is released and where it either
leaves the incline or is stopped.

e Make a table showing your measured starting height (h), maximum speed (vmax),
and maximum speed squared (v, ) for each case.

e Answer Question 3 (include your data table with your answer)

Position vs Time

ition (m)

Pos

Time (s)

4. Adjust the display of the iOLab app display so that it shows only the cart’s position,
not the velocity or acceleration graphs. With the cart on the horizontal lab bench,
figure out how to move the cart so that its position graph looks like the example shown
above.

e Take a screenshot of your resulting graph.

e Answer Question 4 (include the screenshot of your position graph).

5. Repeat Experiment 4, but moving the cart so it reproduces first the v vs. t graph shown
above, and then the a vs. t graph.

e Take a screenshot of your resulting graphs.

e Answer Questions 5 and 6 (include the screenshots of your position graphs).



Velocity vs Time

‘.“r‘||‘lli\l",' \jlr'\.""‘

me (5)

Acceleration vs Time

cceleration (m/s/

me (s)

3  Questions

If you have not already, make sure to read over PREPARING LABORATORY REPORTS.

Your LAB REPORT must include the answer to each of these questions as complete
sentences with requested responses or numerical results explained completely in the
proper context of the experiment.

For example, if a question says: "3. In Procedure C, what current did you determine to
be flowing through the resistor?”

You would want to write an answer similar to: "3. We found the current through the
resistor to be 35.2 +0.1 mA." Make sure you also always answer all parts of the question

asked.

1. Referring to the data in Experiment 1.

a. What value did you determine for the average speed using the position graph?
Include uncertainty, reporting your answer in the form X + Y, where X is
the measured value and Y is its uncertainty, using proper units and significant
digits. Explain how you determined the value and include a screenshot. Recall



that the uncertainty in the slope value in this question may be considered to
be £5% of the slope value supplied by the iOLab software.

What value did you determine for the average speed and its uncertainty using
the velocity graph? Express similarly to part (a). Explain how you determined
this value and include a screenshot. Recall that the uncertainty in the velocity
determined from the velocity plot is given by the ¢ parameter reported by the
iOLab software.

Are your two results for the average velocity consistent with each other within
the uncertainties?

Do your acceleration data in this region confirm that the velocity was constant?
Report the value of acceleration and its uncertainty as determined from the ac-
celeration vs. time plot and explain briefly. Include your screenshot.

2. Referring to the data in Experiment 2:

Are you able to determine the velocity of the cart using the same methods as the
Experiment 17 Explain clearly why or why not. Include a screen shot as part of
your explanation.

3. Referring the data in Experiment 3.

a.

b.

Explain how you determined the starting heights and maximum velocities.

2
max

Using Google Sheets, Ezcel, or something similar, plot v vs. h. Plot using
mks units.
When asked to make a plot of A vs. B — "A" is always on the y-axis and "B" is always

on the z-azis
Fit a line to your plot and display the fit on your plot. Include your plot.
Do your data suggest that v2, . is linearly correlated to h? Explain.

What are the units of the slope of the line you plotted? Given this answer, what
quantity do you suspect we are able to derive from this slope? (e.g. velocity,
energy, momentum, etc.)

Why we are plotting v2,,, may not have been presented yet in class. This question is

first about working through the procedure and software/concepts. Second, it is about
how dimensional analysis can be a useful tool.

4. Referring to the data in Experiment 4:

Explain how you moved the cart to create the desired position vs. time graph and
why that method makes sense. Include your screenshots.

5. Referring to the data in Experiment 5.:

Explain how you moved the cart to create the desired...



a. velocity vs. time graph and why that makes sense.

b. acceleration vs. time graph and why that makes sense.



PHYSICS 110 - EXPERIMENT 2
MEASURING ACCELERATION

1 Introduction

In last week’s experiment, we began investigating the motion of an object moving in one dimension.
We will continue those investigations in this week’s experiments, where we will make measurements
on accelerating systems and determine the value of g, the acceleration due to gravity at the surface
of the Earth.

2 Procedure I - Free Fall

Perhaps the most straightforward way to determine the acceleration due to gravity is to measure
the acceleration of a freely falling object. You will perform such an experiment using photocell
gate (i.e. photogate) detectors for timing. The photogate consists of a light emitter and a light
detector separated by a distance. The light emitter produces an invisible beam of infrared light
which is received by the detector. When an object, such as a falling ball, passes through the
photogate, it blocks the light beam. Computer-controlled electronics can measure the time that
the beam is blocked or the time delay between successive interruptions of the beam.

In this experiment, you will drop a ball so that it falls through two photogates in succession
(see Figure 1). The ball falls a distance y; before reaching the first photogate and then continues
falling through a total distance vy, before passing the second photogate. You will measure the time
interval T' between the passing of gate 1 and gate 2. Knowing yi, yo, and T, you can deduce (as
you were to do for the Prelab) the acceleration due to gravity, g.

1. Set Up Apparatus

e Photogates emit an infrared (IR) beam on one side and detect that beam on the
other side of the gate. They work by periodically checking to see if the beam is
blocked /unblocked and recording the time when the state of the gate (blocked /unblocked)
changes.

e The photogates are mounted on a vertical rod with photogate 1 on top and the photo-
gates in good vertical alignment. Use a meterstick to ensure good vertical alignment of
the photogates. Position the horizontal "drop indicator bar" directly above photogate
1, as shown in Figure 1.

e Connect the top and bottom photogates to the Dig/Sonicl and Dig/Sonic2 slots, re-
spectively, of the Vernier LabPro interface. Open the LoggerPro software. Click on the
LabPro icon (the blue-green rectangle in the upper left of the screen) and verify that
LoggerPro has automatically recognized the photogates. Right-click on photogate 1
and set it to “Photogate timing”. Do the same for photogate 2. Then close the LabPro
window.
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Figure 1: Diagram of experimental set up.

2. Verify the photogates are working
You should see three columns of data: time, GateStatel and GateState 2.

o A GateState value of 1 indicates the infrared beam is blocked. The time associated
with a gatestate of 1 indicates the time interval between the click of the collect button
and when the beam was first blocked.

e A GateState value of 0 indicates the photogate is not blocked. The time associated
with a gatestate of 0 indicates the time interval between when the beam was again
detected after being blocked.

3. Set-up Data Collection

e Under the Experiment heading, select Data Collection and set the experiment time
to 60 sec and the sample rate to 1000 samples/sec. What does the sample rate tell
us about the uncertainty of our time measurement? What if the sample rate were 1
sample/sec?

e Click Collect, and then pass your hand between each of the gates. Verify that the
gate states are as you expect and that the time intervals are reasonable.

4. Perform the Experiment

e Holding the ball at the level of the "drop indicator bar", drop the ball through the
photogates. Be sure that the ball passes cleanly through both photogates-if



the ball bounces off the sides of one of the gates the results will be poor and you should
repeat the experiment.

e Measure and record the distances y; and y, and their respective uncertainties. Deter-
mine and record the time interval T" for the object passing from one gate to the next.
Take at lease four more runs and record the time values you obtain in a table.

3 Procedure II - Acceleration on a Ramp

With an analysis only incrementally more difficult than for the free fall experiment, one can
determine the acceleration due to gravity by measuring the acceleration of an object sliding or
rolling down a ramp. The analysis of this problem will be discussed soon in class, but at this time
we are concerned with the measurements.

1.

4

2.

Using a meter stick, take measurements to determine the angle of the ramp and its uncer-
tainty.

Launch the iOLab App and turn on the iOLab cart. Select the Wheel option and show the
acceleration chart only. On the chart’s Settings, select Autoscale. Set the run time to 5
seconds.

Orient the cart at the top of the ramp with its y-axis pointing downhill. Click the record
button and let the cart accelerate downhill.

. Select the region of the resulting graph in which the acceleration (a) was more or less

constant, and record the average value and standard deviation of (shown as p).
Repeat three more times and find the average value and standard deviation of aqownnin-

Repeat steps 3-5, but launch the cart uphill on the ramp and find the average value ayphin.

Questions

. Figure 1 shows a diagram of the set up for first experiment. The ball is released at height v,

above the photocell gate and a distance y, away from a second photocell gate. We measure
the time T taken to traverse the distance between the photocell gates. Derive an algebraic
expression for g in term of vy, yo and T

Hint: It will be useful to express the time it takes to travel from the release point to the first
photocell gate (through the distance y;) as ¢; and the total time from the release point to second
photocell gate as to and then recognize that to —t; =T

(a) Show your data table for the five ball drop trials. Also calculate the average value of the
time T taken for the ball to travel from the upper to the lower photogate. Assume the timing
has a systematic uncertainty of £0.002s. Report the average value of the time difference in
the standard form of value + uncertainty, that is T + AT, using proper significant digits and
including units.

(b) Calculate the acceleration due to gravity g from your data. Then calculate the maximum value
value of g consistent with your experiment, taking into account the uncertainties in yp, y2 and



T, showing your calculation. The uncertainty can be taken to be Ag = gmax — g. Report your
answer for the acceleration due to gravity and its uncertainty in standard form.

What is the percent difference between your results and the accepted value of g (9.80 m/ 82)?
Note that it is customary to round percent differences to one (or at most two) significant digits.
Percent Difference is found by taking the difference between your measured and accepted value
divided by the accepted value. Or, mathematically:

(measured - accepted

) x 100%
accepted

Are your results consistent with the accepted value? Explain. Note that the two
numbers agree if they are within 2x the uncertainty width, that is, if

|gexperimen‘c - gaccepted' < Ag

Calculate sin(f), the sine of the angle between the ramp and the horizontal, using your
distance measurements of the inclined ramp. Then calculate the maximum possible value
of sin(#) consistent with the uncertainty in your measurements. Show your calculations. As
usual, take the uncertainty in sin(6) to be the difference of those two values, and report sin(f)
and its uncertainty in standard form.

Consider your iOLab cart data. Given that the cart’s friction is not negligible, should a be
larger for the uphill or the downhill runs? Explain. (Hint: What should the direction of the
frictional force be in each case?)

Average your final values for ayphin and agownnin- Average the uncertainty values also, and
report your experimental value for a and its uncertainty in standard form.

It is plausible that @ should give you the acceleration the cart would have in the absence
of friction. Without friction, we expect an acceleration of a = gsin(f). Use your data to
determine gexperimental and its uncertainty. Note that to find the uncertainty, you'll need to
find the maximum value of g consistent with the uncertainties in a and in sin(). Show your
work. Report your final answer for ¢ and its uncertainty in standard form.

Is your result consistent with the accepted value of 9.8 m/ s?? What is the percent error?
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PHYSICS 110 - EXPERIMENT 3
INTRODUCTION TO FORCES

1 Introduction
You will be performing two different experiments studying the nature of acceleration as a vector

using an inclined plane. You will be introduced to a new tool on your iOLab devices, the force
sensor. Introductions to each of the experiments are presented below.

2 Procedure

Figure 1: The inclined plane set-up with incline angle 6.

THE INCLINED PLANE I - Gliding (with small friction)
A. Introduction

We would now like to study the inclined plane and an object gliding without friction, as an
ideal system for studying one-dimensional, translational motion. Your iOLab cart rolls on
wheels with smooth bearings that are not frictionless, but when rolling on a smooth surface
over a short distance, the friction in the bearings is relatively minimal and we can get a fairly
good approximation to ideal "frictionless results", though you will see they are not perfect.

We say our cart exhibits translational motion as all the points on it move together at the
same velocity (i.e. the cart isn’t rotating). You may have noted that the wheels of the car are
rotating so the motion is not entirely translational. However, you’ll also notice the wheels
have very little mass and this means that the the carry very little rotational inertia and rota-
tional kinetic energy (which you will learn about later), and thus the rotational contributions
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to the motion are very small and we will consider the motion as a pure translation. This
is a good example of how we can use a simplified model (neglecting friction and rotational
motion) to gain insight into a not-so-simple physical system.

Perform Experiment

i.

ii.

iii.

iv.

vi.

vil.

Set up an inclined plane (like you did in Experiment 1 and as shown in Figure 1).
You will need to determine the angle. Measure that angle as before by making
measurements of length and height using a meter stick. Be careful and clear about
what measurements you are taking.

We will be now rolling the carts down the incline and measuring the acceleration of the
cart using the Wheel sensor. Connect and sync the iOLab with your computer. Place
the iOLab cart on the incline wheels-down with the y-axis pointing down the incline,
but keep your hand (or something) in front of it so that it doesn’t yet roll down the
incline.

Initiate the Wheel sensor and make sure the velocity plot is on. You will not need the
position or acceleration plot for this experiment.

Begin recording data. Release the cart and let it roll to the bottom of the incline, being
careful to catch the cart at the bottom. Please protect the cart and its good wheel
bearings from unnecessary jolts!

Before proceeding take a moment to change the limits on your data (i.e. zoom in)
such that the region where the cart was smoothly gliding down the incline is clearly
displayed. This will be easily identified as a region of constant acceleration where the
velocity is increasing linearly.

Drag the cursor over the linear region and the software will display the measured data.
Record the value for the slope (denoted s and expressed in units of m/s2.) Then repeat
3 more times. Record your four values of acceleration.

Repeat this procedure four more times using different incline angles (that is, for a total
of five different incline angles.)

12
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Figure 2: Set-up for the force balance experiment.

THE INCLINED PLANE II - Force Balance:

A.

3

Introduction

We would now like to further study the forces at work by attaching a hanging mass and
balancing the forces on the iOLab. In order to do this we will again need to build an inclined
plane, attach a pulley and also attach a string conecting the iOLab to a suspended mass
over the pulley.

Perform Experiment

i. Connect a string to your ioLab cart, place your cart wheels-down on the inclined plane
(with an angle of at least 20 degrees), and pass the string over the pulley as shown in
Figure 2 above.

ii. Add masses to the hanging string until you balance the forces such that the iOLab
does not move either up or down the incline. Explore the range of masses that will
satisfy the "balanced" condition. Half of this range will be your uncertainty. Record the
maximum and minimum suspended masses (which is equal to the respective tensions
in the string).

iii. Add a 50 g mass to your cart and repeat the experiment. Repeat the experiment for
added masses of 0, 50, 100, 150, and 200 grams.

Questions

1. Report your measurements from Experiment I in a table with columns for the measured
dimensions of the incline, sin(#), where 6 is the angle the incline makes with the horizontal,
and @, the average acceleration at each incline height.

2. (a) Assuming the cart is sliding down the incline frictionlessly, derive an algebraic expres-
sion for g, the acceleration due to gravity, in terms of @ and #. Show all the steps.

(b) Make a plot of a vs. sin(f). Explain clearly how you can use the properties of the linear
fit on your plot to determine the numerical value of g.

(c) Calculate the uncertainty in the value of g obtained from your plot, using the method
from page xvii (Uncertainty of the Slop and Y-Intercept of a Linear Fit). If the R?
value on your plot exceeds 0.98, you should use the method described on page xvii to
obtain the R-value from Excel or Google Sheets to greater numerical precision (use
about 6 significant digits). Show your uncertainty calculation. Then report your final
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value for g and its uncertainty in standard form (that is, in the form g4+ Ag with proper
significant digits and units.)

Are your results consistent with the expected value for ¢ (9.80 m/s*)? Explain. Do the

assumptions of the model used (negligible friction and rotational dynamics) appear to
be justified?

Refering to Figure 2, draw well-separated force diagrams showing the forces on m; (the
iOLab cart) and ms (the hanging mass). Label each force vector and describe in words
each force vector. To "describe" a force, you must state whether the force is contact or
gravitational, which agency is exerting the force, and which mass the force is acting on.

Balancing force components along the incline, derive an expression for m; as a function
of ms, g, and the incline angle 6.

Replace m; in your expression above with m; + Am, where m; denotes the mass of the
ioLab cart and Am denotes the added mass. Suppose a plot were made with ms on the
y-axis and Am on the x-axis. Show that the result would be a straight line and derive
algebraic expressions for the slope and y-intercept. (Algebraic expressions means that
you should express the slope and y-intercept in terms of symbols like m;, ¢, and # and
not use numbers.)

Now make the above-described plot and display it in your report. Find numerical values
for the slope and y-intercept. Also find the uncertainties in the slope and y-intercept,
using the method described on page xvii. Show your work. Report your experimental
values for the slope and y-intercept and their uncertainties in standard form.

Using the values obtained above, determine the mass m; of the ioLab cart, and its
uncertainty. Show your work. Report your experimental value for the mass of the cart
and its uncertainty in standard form.
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PHYSICS 110 - EXPERIMENT 4
INCLINED SEMI-ATWOOD MACHINE

1 Introduction

This week, we will revisit the static equilibrium experiment investigated in last week’s lab. By
increasing the hanging mass so that the balance condition is upset, the equilibrium is disrupted
and the system undergoes uniform acceleration. We will use Newtonian dynamics to analyze the
accelerating system.

m,

“

B

Figure 1: Set-up for the inclined semi-Atwood experiment.

2 Procedure

1. Your set-up should consist of the iol.ab cart on an incline with a string from the cart running
over a pulley to a hanging mass as shown in Figure 1 above.

2. Make measurements with a meterstick to determine the angle 6 your incline makes with the
horizontal. Record your measurements and their estimated uncertainties.

3. Weigh your ioLab cart on a triple beam balance and record its mass and the estimated
uncertainty.

4. Place the cart on the incline, pass the string over the pulley, and add the smallest mass
to the mass hanger so that the cart, when released from rest, accelerates smoothly up the
incline. A reasonable approach would be to find the mass that balances the cart in static
equilibrium, and then add about 20 g of additional mass. You could choose a bit more or
less in order to minimize the number of mass disks piled on hanger.

Be careful not to let the cart drop or collide roughly with the pulley—please
catch the cart gently and protect its good wheel bearings.

5. Start the iolab software, choose the Wheel sensor, and select the velocity vs. time plot.
Release the cart from the bottom of the incline, allowing it to accelerate upward toward the
pulley (and catch the cart before it strikes the pulley!) Use the software zoom tools to zoom
in on the linearly increasing range of the acceleration, then use the analysis tool to drag over
the linear region and display the slope. The slope is denoted "s" and given in units of m/ s
Record the slope. Repeat four more times, recording each value of the slope, then find the
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3

2.

average. This will be the average acceleration of the cart for your initial value of hanging
mass ms.

Repeat the above procedure four more times, each time adding 20 g to the hanging mass

ma.

Questions

. Display your data in a table with columns for the hanging mass ms, the average acceleration

a, and the value of (m; +my)a.

(2)

(b)

Starting with well-separated force diagrams for m; and ms, set up and solve Newton’s
equations to derive an algebraic expression for acceleration a in terms of the parameters
m1, Mo, acceleration due to gravity g, and the incline angle 6.

Suppose one were to plot the quantity (m; + ms)a on the y-axis vs. mg on the z-axis.
Show that such a plot must be linear and find algebraic expressions for the slope and
y-intercept of the plot. Hint: From your solution in part (a), rearrange terms so that
the quantity on the y-axis, (m; + mgy)a, appears on the left side. Can you arrange the
terms on the right side in the form const x x + const, that is, in the form max + b7

Make the plot described in the previous question. If the R? value is above 0.98, be
sure to use the method described on p. xvii to find the value of the linear correlation
coefficient R to greater numerical precision.

Find the uncertainty in the slope and y-intercept values, using the method described
on p. xvii. Show your work. Report the numerical values of slope and y-intercept along
with their uncertainties in standard form.

From your finding for the slope of the plot, what value do you determine for g, the
acceleration due to gravity? Is your measured value in agreement with the accepted
value of 9.80 m/s”? Explain.

If your value differs from the accepted value, can you suggest a probable source of
systematic error that could account for the discrepancy?

Calculate sin(#), the sine of the angle between the ramp and the horizontal, using your
distance measurements of the inclined ramp. Then calculate the maximum possible
value of sin(f) consistent with the uncertainty in your measurements. Show your
calculations. As usual, take the uncertainty in sin(6) to be the difference of those two
values, and report sin(f) and its uncertainty in standard form.

Use the numerical value you obtained for the y-intercept of the plot to calculate sin(6).
Your calculation will also involve g and m; and their uncertainties. You may use the
accepted value of ¢ for this question and assume that it has negligible uncertainty. Is
the value of sin(f) you calculated consistent with the value calculated in part (a)?
Explain. Roughly speaking, two measured values are called consistent if they differ by
less than twice their uncertainty (which you may approximate as the sum of the two
uncertainties.)
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PHYSICS 110 - EXPERIMENT 5
ACCELERATING SYSTEMS

1 Introduction

This week, you will perform an experiment, shown in Figure 1 below, similar to last week’s but
with two novel features: sliding friction will be important, and the moving masses will have related
but distinct accelerations. Since the iOLab cart will be sliding rather than rolling, we’ll use its
on-board accelerometer sensor to measure accelerations. In the analysis of the experiment using
Newton’s laws, you will be able to determine the acceleration due to gravity g and the coefficient
of kinetic friction .

rigid support

| | LX

'Figure 1. The two-mass system of Experiment 4.

2 Procedure

A. Calibration and Set-Up

i. This week we will introduce the accelerometer sensor housed within the iOLab cart.
First, you must calibrate the accelerometer: in the iOLab app, with the iOLab device
turned on, click on the gear icon and go down to Calibration — Accel - magn -

gyro.

ii. Follow the directions in the prompts to calibrate the accelerometer. Be sure to use a
level surface when calibrating the device.
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iii. Use the triple beam balance to measure the mass of the iOLab cart.

iv. Use the triple beam balance to measure the mass of the hanging pulley. Don’t forget
to include this mass and the 50g mass hanger when you calculate m;.

v. Arrange the apparatus so the string passes over the fixed pulley and under the moving
pulley as shown in Figure 1.

. Add 150g to the mass hanger. Record the total mass of m; and its estimated uncer-
tainty. Carefully rub down the surface of the table on which the iOLabs cart will slide with
a clean dry cloth. (This step is to help ensure the friction remains constant for successive
measurements. )

. Put the cart on the opposite end of the table from your hanging mass and set it down on
the felt pads (not the wheels!) and hold it in place so it doesn’t slide. Make sure your string
is running over the pulleys as desired.

. Turn on the accelerometer and make sure you are recording the acceleration component in
the y-direction in which the cart will be moving; turn off the other acceleration component
measurements for clarity.

. Press Record and release the cart and let it slide across the table stopping it with your hand
before it reaches the table edge. Please be sure to gently catch the cart and do not
let it fall off the edge of the table.//

Make sure the cart is sliding smoothly across your table; if it slides with lots of starts and
stops add a bit more mass and try again.

. The plot of acceleration vs. time will exhibit a roughly constant section corresponding to the
sliding motion of the cart across the table. Use the zoom tools to zoom in on this region, and
use the analysis tool to select the region and display the measured values. Record the mean
acceleration and it uncertainty during the time the iOLab cart slid across the table. Repeat
this measurement 5 times, and find the average value of the acceleration and its uncertainty.

. Repeat the above procedure with a total of 5 different suspended masses with added mass
from 150 g to 350 g, ()typically) placed on the mass hanger. For each suspended mass, make
a table entry showing the hanging mass (m;), the acceleration of the iOLab cart (aq), and
the uncertainty of each.
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3  Questions

1. Display your data in a table with columns for the hanging mass my, the average acceleration
ay, and the value of (m; +4ms)a;. Your values for m; should include the mass of the moving
pulley, the mass hanger, and any additional mass used. Note that acceleration a; = as/2;
see Question 2b for discussion of this point.

2. (a)

(b)

(b)

Starting with well-separated force diagrams for m; and ms, set up Newton’s equations
for each mass. Note that the masses have distinct accelerations; denote them by a; and
Q9.

Observe that when the falling mass descends a distance x, the iOLab cart slides a
distance 2x. This is true during any interval of time, so the accelerations are related
by the equation of constraint as = 2a,. Using this relation, solve the force equations to
derive an algebraic expression for acceleration a; in terms of the parameters mq, mo,
acceleration due to gravity g, and the coefficient of kinetic friction py.

Suppose one were to plot the quantity (m +4ms)a; on the y-axis vs. my on the z-axis.
Show that such a plot must be linear and find algebraic expressions for the slope and
y-intercept of the plot. Hint: From your solution in part (a), rearrange terms so that
the quantity on the y-axis, (m; + 4ms)a, appears on the left side. Can you arrange the
terms on the right side in the form const x x + const, that is, in the form mx + b7

Make the plot described in the previous question. If the R? value is above 0.98, be
sure to use the method described on p. xvii to find the value of the linear correlation
coefficient R to greater numerical precision.

Find the uncertainty in the slope and y-intercept values, using the method described
on p. xvii. Show your work. Report the numerical values of slope and y-intercept along
with their uncertainties in standard form.

From your finding for the slope of the plot, what value do you determine for g, the
acceleration due to gravity? Is your measured value in agreement with the accepted
value of 9.80 m/s”? Explain.

If your value differs from the accepted value, can you suggest a probable source of
systematic error that might account for the discrepancy?

5. Use the numerical value you obtained for the y-intercept of the plot to calculate the coefficient
of kinetic friction muyg. Your calculation will also involve g and m; and their uncertainties.
For this calculation, use the experimental value of g and its uncertainty that you found
above. Does your result for mu, appear reasonable?

6. Consider the system shown in Figure 1. Suppose my = 200.0g, the coefficient of static friction
is 0.400, and the coefficient of kinetic friction is 0.300.

(2)
(b)

If the system is in static equilibrium, what is the largest possible value of m,?

In the above situation, if m; is given a slight, brief push, the friction becomes kinetic
rather than static. What is the acceleration of a; in this case? Show your calculation.
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PHYSICS 110 - EXPERIMENT 6
THE CONICAL PENDULUM

1 Introduction

The conical pendulum consists of a mass at the end of a string; the upper end of the string is
fixed and the mass orbits in uniform circular motion as shown in Figure 1, while the string sweeps
out the surface of a cone. By investigating the dynamics of the conical pendulum, we will be
able to verify the theory of rotational dynamics presented in class. With the other experimental
parameters known, we can use the conical pendulum to measure g, the acceleration due to gravity,
providing a quantitative test of the theory of rotational dynamics. The upper end of the string
is tied to the force sensor and we can use it to measure both the horizontal component of the
force required to keep the mass moving in a circle and the orbital period T, the time it takes to
complete its circular orbit.

Figure 1: Schematic of the conical pendulum.

A . Procedure

We will be using the force sensor in the iOLab this week. The iOLab force sensor, connected to
the small eyebolt on the negative y side of the device, can detect force in only a single direction
at a time. This will provide sufficient information to learn a great deal about the system.

1. Open the iOLab Program and turn on your iOLab. Check the Force Sensor box and per-
form a calibration by clicking the gear icon #- and selecting Calibration — Force and
following the directions.

21



. The eyebolt on your device should be connected to a string about 50 cm long fastened to
a small brass ball. Carefully measure the length of the string from its attachment to the
eyebolt to the center of the ball using a meterstick. Record your result and its estimated
uncertainty.

. Measure the radius r of the reference circle drawn on paper (this will be the orbital radius of
your pendulum) and also its uncertainty. Note: The uncertainty in 7 will not be determined
by the precision with which you can measure the circle, but instead the precision with which
you can get the pendulum to accurately follow the circle, which you will need to estimate
reasonably. It would be OK to revisit this estimate after trying to operate the pendulum
and seeing how it goes.

. Make sure the sensor is properly zeroed as well by holding it horizontally (as you will be in
the experiment) with no mass and clicking the Rezero Sensor button at the bottom of the
force vs. time graph. You can rezero at any point during the experiment to ensure that your
Force Sensor is properly zeroed.

. Now, practice holding the iOLab device horizontally as shown in Figure 1 and making the
ball orbit in uniform circular motion above the reference circle. You will find that it is
surprisingly easy to do so and you will not have to move your hand much (although slight,
almost unconscious motions are occurring to supply the small amount of energy lost to air
resistance and maintain the orbit.) When you are reasonably good at this, you are ready to
acquire the data from the force sensor.

. When you are ready to acquire data, start the ball orbiting over the circle and when the
orbit is as desired, begin collecting data by clicking Record. Let the ball complete 10 or
more orbits, then stop recording by clicking Stop. The plot of force vs. time should look like
a sine wave. Before proceeding, discuss the following questions with your lab partner(s).

e Why is the plot sinusoidal?

e How can the force vs. time plot be used to find the horizontal component of the tension
in the string?

e How can the orbital period be deduced from the force vs. time plot?

. To analyze your data, select the analysis tool (bar graph icon) and drag the cursor over
the region of data between the center of one peak and the center of another peak. Ideally,
measure over several complete peaks, perhaps 10 or more. The display will show the total
time. Dividing the total time by the number of complete periods will yield the period T of
a single orbit. Record this result. Then take a screenshot of your force vs. time plot to be
included in your report.

. Next, you will measure the vertical distance from the top of a peak to the bottom of an
adjacent peak, which corresponds to the component of force in Newtons measured by the
force sensor. Use the zoom tools to zoom in on one peak and adjacent trough near the
center of your data. Then, with the analysis tool selected, you will see the force reading
corresponding to the cursor position on the screen. Move the cursor to read the force at the
top of a peak and at the bottom of the adjacent peak and take half the difference, which
will be the horizontal force (amplitude of the sine wave) in Newtons.
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. Perform a total of at least 3 trials of the experiment. If the values of T" or F}, for a given

trial differ by more than 10% from the average of your other trials, reject that trial and try
again.

Questions

. Display your data in a table with columns for the orbital period 7" and horizontal force

amplitude F}, for each trial. Display also the average of your trials. As a rough estimate
of your uncertainty, you can use the maximum difference between the an individual trial
and the mean. Report your findings of the mean period T' and the mean horizontal force
amplitude Fj, and their uncertainties in standard form. Also report your measurements for
the length L of the pendulum and radius r of the orbit and their uncertainties in standard
form.

. Writing the component equations of motion in the vertical and radial directions, derive an

algebraic expression for the period T of the mass’s circular motion in terms of the quantities
g, r, and L, where g is the acceleration due to gravity, r is the radius of the circular orbit,
and L is the length of the pendulum. Note: Do not include the angle 6 of the pendulum with
respect to vertical in your final answer—you can eliminate this parameter using geometry.

(a) Using your experimental data and the expression derived above, calculate the acceler-
ation due to gravity g. Also calculate its uncertainty. Show your work. Report your
experimental value for g and its uncertainty in standard form.

(b) Find the percent difference between your experimental value for ¢ and the accepted
value of 9.80 m/ S your experimental value consistent with the accepted value? If
not, can you suggest a possible explanation?

. Derive an algebraic expression for the mass m of the ball in terms of the horizontal component

of the tension force (F},) in the string, the orbital period (T), and the radius (r) of the orbit.

. Using the expression you derived above and your experimental measurements of Fj,, T, and

r, calculate the mass of the ball. Does the value you calculated seem plausible? FExplain
briefly.

. Is it physically possible to whirl a pendulum around in a horizontal plane with the string

perfectly horizontal (assume that your hand does not get in the way)? Explain. (This is a
thought experiment - please do not try it.)

. Include your screenshot of the data plot from the lab.
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PHYSICS 110 - EXPERIMENT 7
CONSERVATION OF MECHANICAL ENERGY IN A
DYNAMIC SYSTEM

1 Introduction

In this lab we will reexamine the familiar dynamical system of the semi-Atwood machine shown
in Figure 1 from the perspective of mechanical energy conservation. When released from rest,
the system accelerates, gaining kinetic energy. The principle of mechanical energy conservation
asserts that in the absence of non-conservative forces like friction acting on the system the sum
of its kinetic energy and potential energy is constant. This implies that, for the two-mass system
under investigation, the amount of kinetic energy gained should equal the amount of gravitational
potential energy lost. We will use the principle of mechanical energy conservation to determine
the unknown mass ms.

Figure 1: Experimental set-up; ms is the i0OLab cart.
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2 Procedure

This week we will be measuring velocity of ms (the cart) using the wheel sensor on the iO-

Lab.
A.

3

3.

Turn on the iOLab application, connect your device and select the Wheel sensor, and uncheck
the Acceleration plot so that just the Position and Velocity plots are displayed..

. Weigh the cart on the triple-beam balance. The paperclip mass is 0.39 4+ 0.01 g. Record

these masses.

. The cart will have a string tied to it (this should not be attached to the force sensor).

Attach the paperclip to that string and add to it a hanging mass of 20 g. Pass the string
over the pulley and start the iOLab cart back at least 50 cm from the edge of the table on
its wheels.

. Press Rezero Sensor under the z-axis of the position plot before releasing the cart from

rest.

. Start data collection and release the cart from rest, rolling toward the pulley. Catch the

cart gently before it strikes the pulley.

. Using the iOLab graphs, record the velocity of the cart when it has moved 50.0 cm from its

starting position. To do so, you will need to use the zoom tools to expand the appropriate
regions of both plots, then move the cursor along the position vs. time plot to identify the
time coordinate when the position reaches exactly 50.0 cm, then move the cursor along the
velocity vs. time plot to identify the velocity coordinate at that moment.// Record the mass
used (including the paperclip) and the velocity obtained.

. Repeat the above measurement twice more. Record each velocity measurement, and then

the average of your three velocities measurements.

. Repeat the above procedure for masses of 40, 60, 80, and 100 g.

Questions
(a) Display your data in a table with columns for the mass m; (including paperclip) and
velocity v for each trial. Display also the average of your trials.

(b) Display another table with columns for the mass my, average velocity v, inverse mass
1/m4, and inverse velocity squared 1/v%.

. Write the equation of energy conservation for the system shown in Figure 1, equating the

system’s energy at the moment of release and the moment when each mass has moved by a
distance L. Use only the symbols my, mo, L, v, and g, where g is the acceleration due to
gravity.

(a) Suppose a plot were made with 1/v? on the y-axis and 1/m; on the z-axis. Using the
equation you derived above, prove that such a plot must be linear and derive expressions
for its slope and y-intercept, expressing your answers only in terms of the variables mq,
ms, L, v, and g.
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(b)

Make and display the plot described above. If the R? value is above 0.98, be sure to use
the method described on p. xvii to find the value of the linear correlation coefficient R
to greater numerical precision.

Find the uncertainty in the slope and y-intercept values, using the method described
on p. xvii. Show your work. Report the numerical values of slope and y-intercept along
with their uncertainties in standard form.

Using the slope relation from Question 3a and numerical value you found in Question
3¢, determine the mass of the iOLab cart my and its uncertainty. You may use the
accepted value of g = 9.80 m/ s*. Explain your reasoning. Report your experimental
result for my and its uncertainty in standard form.

Report the measured value of my you obtained using the triple-beam balance, along
with its estimated uncertainty, in standard form.

Are the measurements of the cart’s mass consistent? If they are not consistent, can you
suggest a possible explanation?

Using the y-intercept relation you found in Question 3a, evaluate the predicted y-
intercept.

Is your value for the predicted y-intercept consistent with the experimental value you
reported in Question 3c¢? Explain.
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PHYSICS 110 - EXPERIMENT 8
TORQUE: ROTATIONAL EQUILIBRIUM AND DYNAMICS

1 Introduction
Earlier in this course you learned that for a body to be in static equilibrium, the sum of the force
vectors acting on that body must be zero (i.e. > F; = 0). However, that is not the only necessary

(2
condition for an object of nonzero size (i.e. anything but a point mass) to be in static equilibrium.
A glance at the following object will illustrate this:

Fl—>

<F,

Suppose the above mass has two forces acting upon it which add up to zero. By Newton’s Second
Law, the object will not accelerate along a line, but it will begin to rotate. The two forces
create a torque on the mass, and the result of this torque is an angular acceleration which leads
to rotation. This fact can be expressed as the rotational analog to Newton’s second law:

ZT:IQ

where T is the torque, « is the angular acceleration and I is the rotational inertia (known as the
moment of inertia) of the object. In this week’s lab we will do one experiment to study rotational
equilibrium and a second experiment to study rotational dynamaics.

2 Procedure

I. Rotational Equilibrium
A net torque causes an angular acceleration (changing rate of rotation) about some axis of
rotation. The magnitude of a torque is given by

T= RF sin(¢),

where R is the radial distance from the axis of rotation to the point of the force’s applica-
tion, F'is the magnitude of the force, and ¢ is the angle between the two. It should be clear
that the maximum torque will occur when a given force F' is applied perpendicularly to the
radial arm R (i.e. tangentially). This explains why it is easier to open a door when you
push farther from the side with the hinges—you get a larger torque for the same applied force.

@)
Axis of Radial ' Force
rotation distance

from axis
to force
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Just as an object at rest must have a net force of zero in order have no translational motion,
the object must have a net torque of zero to experience no rotational motion.

Consider a rod of length L being supported horizontally by two strings, one at its right
end and one a distance x from the right end (see the figure below). Including the force due
to gravity, there will be three forces acting on the rod. (Note that the force of gravity can
be considered as acting at the center of the rod at the rod’s center of mass.) These three
forces, depending upon where they are with respect to the axis of rotation, may also create
torques on the rod.

Torque is a vector quantity, hence it has both magnitude and direction. If a torque tries to
induce a clockwise rotation about a given axis, the direction of that torque is into the page
(we will call it negative in this case). A torque directed out of the page will be positive as
it would lead to a counterclockwise rotation. For a body to be in static equilibrium
the sum of the forces must be zero and the sum of the positive and negative
torques must also be zero. In the first experiment you will experimentally determine
what masses (M and Mg) are necessary to apply forces F, and F that keep the suspended
rod in equilibrium.

1. Weigh a meter stick. Your apparatus will have a suspended meter stick with an extra
100 g hanging from its midpoint, and two clamps (22.70 4+ 0.05 g each) attached to
strings connected to My and Mg.

2. Position the string pulling up with force F so it is at the right end of the rod. Position
the right pulley above that point so that the string is vertical.

3. Position the string pulling up with force F, so it is 5 cm in from the left end of the rod
(i.,e. X = L — 5 cm), and reposition the left pulley so it is above that point with the
string vertical.

4. Adjust the mass on the left and right mass hangers so the rod is horizontal and in
equilibrium. Experiment to find the range of masses that will satisfy this equilibrium
condition (i.e. figure out the uncertainty in your values of M and Mp.)

5. Repeat steps (3) and (4) with F7, 10 cm, 15 c¢m, 20 c¢m, and 25 cm from the left for a
total of five positions.

Fill in Table I below.
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X +£60X (cm) My £+ 6My, (g) Mg+ §Mp (g) (Mp + Mg) £0M (g)

1I. Rotational Dynamics
Just as an unbalanced force will create a linear acceleration in the direction of the force, an
unbalanced torque will create an angular acceleration in the direction of the torque (i.e. par-
allel or anti-parallel to the axis of rotation). The angular velocity w of an object is defined
as the rate of change of its angular position (w = %) in radians/second - recall that 27
radians = 360°. Likewise the angular acceleration « of an object is the rate of change of

that object’s angular velocity (o = %). Angular acceleration is measured in radians/sec?.

If an unbalanced, or net torque T, is applied to an object, the object will experience
an angular acceleration which is proportional to the net torque: T, = Ia. This is the ro-
tational analog to Newton’s second law of motion. The constant of proportionality I in this
equation is a measure of the object’s rotational inertia - or resistance to angular acceleration
-just as the mass M is a measure of an object’s resistance to translational acceleration.

For an object of mass M and radial dimension R measured from the axis of rotation, its
rotational inertia will always have the form I = CMR?, where C is a dimensionless constant
less than or equal to 1.

In this second experiment you will determine the rotational inertia I and the constant C'
characteristic of a cylindrical disk rotating about its center.

(a) Measure and record the mass of the solid plastic disk. The radius R of the disk is
12.70 £ 0.03 cm and the smaller radius r at which the tension in the string causes a
torque on the disk is 1.50 4+ 0.03 ¢cm. (Note this is the top-most and narrowest of the
spindle slots.)

(b) Note that the bearings for this experiment provide a nearly frictionless environment

31



for your disk, which can rotate freely. You will use the photocell gates to measure its
angular velocity w as a function of time while a constant torque is being applied.
Determine the angular displacement Af the disk makes while the photocell gate is
blocked:

measure the width of the photogate "blocker" and the radius out from the center of the
disk to the photogate.

Width: Radius: _— Af (radians) = width/radius =
You may enter the Af into LoggerPro as the width of the blocker in radians, so the pro-
gram is able to automatically calculate angular velocity in rad/sec as you will see below.

If you then measure the time At during which the gate is blocked, you’ll be able to

A9
calculate the angular velocity as Z;.

You alternatively can have Logger Pro calculate the angular velocity for you: click on the Log-
ger Pro icon, then click on the Photogate icon. Select the Set Distance or Length option,
and enter the above width in radians, and adjust the units from m to rad. The velocity data
column will now show the angular velocities for the times in which the gate is blocked.

Start the Logger Pro software running in the Gate Timing mode and set the experi-
ment duration to about 40 seconds.

Recall that to set-up Logger Pro, you’ll need to click on small green icon in the upper
left of the screen to display the sensors, click on the Photogate sensor, and select Gate
Timing from the drop-down menu; to set the experiment duration, choose Experiment,
then Data Collection, and enter the desired experiment duration. Also, set the Ex-
periment to measure 1000 samples/second.

After the Logger Pro is set up, hang 40 grams over the pulley on the 1.3 + 0.1 gram
paperclip, center the "gate blocker" in the photocell gate, and release the disk from
rest. The computer will then tell you the At’s for times at which the disk has rotated
through 27, 47, 67, 87, and 107 radians. Record these five times.

Then repeat the above procedure for masses of 60 g, 80 g, 100 g, and 120 g. Be
careful to delete data from any rotations occurring after the descending mass has hit
the floor.

3  Questions

I. Rotational Equilibrium

1.

3.

Display a data table with columns for the distance z, left mass My, right mass Mg,
total mass M + Mg, and the quantity i Report units and uncertainties for measured
quantities. Report also the meterstick length and mass (without added masses or
hangers) and their uncertainties, in standard form.

Referring to your data table, what should you expect for the sum of the masses in the
(Mg + Mpg) column? Are your experimental results in the (Mg, + Mpg) column consistent
with your expectations? Explain.

a. Write the torque balance equation for all torques acting about the right end of the
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meterstick. Taking note of this relation, show that if M}, were plotted on the y-axis
and i were plotted on the x-axis, the plot would be a straight line. Derive algebraic
expressions for the slope and y-intercept of the line in terms of the variables of the
problem.

b. Make and display the plot described. Determine the slope and y-intercept and
their uncertainties. Show your work. Report the slope and y-intercept and their
uncertainties in standard form.

c. Using your results for the slope, determine and report the mass of the meterstick
and its uncertainty. Is the value consistent with the value reported in Question 17
Explain.

d. Is the y-intercept value determined from the plot consistent with the predicted
value from part (a)? Explain.

IT. Rotational Dynamics

1.

4.

For each value of hanging mass m, display a table showing the rotation angle 6, the
measured time that the gate was blocked, and the squared angular velocity w?. The
rotation angle will take the values 27, 47, 67, 87, and 107 radians. Report your mea-
sured values for the radius and width of the gate blocker, along with their uncertainties,
in standard form. Show one example of how you calculated the angular velocity w.

For each value of hanging mass m, plot a graph of w? vs. 6. From the slope of each
graph, determine the angular acceleration «. Use rotational kinematics to show how
the slope is related to . Show one example of your calculation of o. You need not find
its uncertainty.

Display a table showing columns for the hanging mass m (including mass hanger pa-
perclip), angular acceleration « (determined in the previous question), 1/m, and 1/a.

a. Plot é Vs. %, and find the numerical values of the slope and intercept of a straight-
line fit to the data. Find the uncertainty in the slope, and report the value of the
slope and its uncertainty in standard form.

b. On the next page is shown the derivation of the following equation:
1 (C’ M Rz) 1 r
! gr m g

Taking note of the above equation, use your plot to determine the constant C' and
its uncertainty. Show your work. Does the value of C' you found experimentally
agree with the theoretically predicted value of 3 (see Chapter 10 of Giancoli)?
Explain.

¢. Find the percent difference between your experimental value and the theoretical
value of C.
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Below we will show that
1 [(CM R*\ 1 N r
a gr m g

Consider the wheel to the below in which

r = the radius of hollow disk about which the string was wound, and thus the radius at which a
torque due to tension in the string is applied

R = the radius of the large solid disk

a= angular acceleration of the disk M = mass of the disk

g = acceleration due to gravity

” We begin with the rotational analog of Newton’s second law, applied to the large solid disk:
Tnet = T

where I is the rotational inertial and generally defined to be I = CM R? in which C is a constant
that depends on the geometry of the mass distribution. This is the constant you are to find.

T is the net torque on the disk due to the tension force Fr in the string. In general, torque
is given by:
T = rFrsin(f)

and in this case, the radial arm is r. The angle between r and the tension force is 90°.

To find the tension force Fr, we consider the falling mass:

r
FTensiun
m
1
1
1
a—=-ra :
i Fg=-mg
1
‘I' Y
Using Newton’s second law:
E F=ma
Fr+Fy,=ma
Fr—mg=—mra



Therefore, from the definition of torque the net torque is

Thet = lao = CM R%«

Setting the torque expressions equal to each other, moving mr2a to the other side, and dividing
by mgra yields:
I (C’M RQ) 1 7

a gr Jm g
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